Chaos for a damped and forced KdV equation

Physica D: Nonlinear Phenomena - Tập 192 - Trang 265-278 - 2004
M. Cabral1, R. Rosa1
1Instituto de Matemática, UFRJ, Caixa Postal 68530, Rio de Janeiro, RJ 21945-970, Brazil

Tài liệu tham khảo

P. Bergé, Y. Pomeau, C. Vidal, L’ordre dans le chaos, Hermann, Paris, 1988. B. Costa, W.S. Don, PseudoPack2000, Numerical package, 2000. P. Collet, J.-P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Birkhauser, Basel, 1983. Cox, 1986, The evolution of resonant water-wave oscillations, J. Fluid Mech., 162, 99, 10.1017/S0022112086001945 Crighton, 1995, Applications of KdV, Acta Appl. Math., 39, 39, 10.1007/BF00994625 Dieci, 1997, On the computation of Lyapunov exponents for continuous dynamical systems, SIAM J. Numer. Anal., 34, 402, 10.1137/S0036142993247311 Farmer, 1983, The dimension of chaotic attractors, Physica D, 7, 153, 10.1016/0167-2789(83)90125-2 Feigenbaum, 1983, Universal behavior in nonlinear systems, Physica D, 7, 16, 10.1016/0167-2789(83)90112-4 Feigenbaum, 1978, Quantitative universality for a class of nonlinear transformations, J. Stat. Phys., 19, 25, 10.1007/BF01020332 Franceschini, 1979, Sequences of infinite bifurcations and turbulence in a five-mode truncation of the Navier–Stokes equations, J. Stat. Phys., 22, 707, 10.1007/BF01107910 Grimshaw, 1994, Periodic and chaotic behavior in a reduction of the perturbed KdV equation, Proc. Roy. Soc. London A, 445, 1, 10.1098/rspa.1994.0045 Goubet, 2000, Asymptotic smoothing effect for weakly damped forced KdV equations, Discrete Contin. Dyn. Syst., 6, 625, 10.3934/dcds.2000.6.625 Ghidaglia, 1988, Weakly damped forced Korteweg–de Vries equations behave as a finite dimensional dynamical system in the long time, J. Diff. Eqs., 74, 369, 10.1016/0022-0396(88)90010-1 Ghidaglia, 1994, A note on the strong convergence towards attractors of damped forced KdV, J. Diff. Eqs., 110, 356, 10.1006/jdeq.1994.1071 Jolly, 1990, Approximate inertial manifold for the Kuramoto–Sivashinsky equation: analysis and computations, Physica D, 44, 38, 10.1016/0167-2789(90)90046-R Jolly, 2000, Evaluating the dimension of an inertial manifold for the Kuramoto–Sivashinsky equation, Adv. Diff. Eqs., 5, 31 Knoblock, 1983, Periodic doubling and chaos in partial differential equations for thermosolutal convection, Nature, 303, 663, 10.1038/303663a0 Ott, 1970, Damping of solitary waves, Phys. Fluids, 13, 1432, 10.1063/1.1693097 Rotoli, 1991, Chaotic dynamics in the map model of fluxon propagation in long Josephson junctions, Phys. Lett. A, 156, 211, 10.1016/0375-9601(91)90141-T D. Ruelle, Chaotic Evolution and Strange Attractors, Cambridge University Press, Cambridge, 1989. R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Springer-Verlag, New York, 1997. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, 1990. Wolf, 1985, Determining Lyapunov exponents from a time series, Physica D, 16, 285, 10.1016/0167-2789(85)90011-9 Zheng, 1989, Period-doubling in a perturbed sine-Gordon system, a long Josephson junction, Phys. Lett. A, 140, 225, 10.1016/0375-9601(89)90927-4