Peptide Mediated Chiral Inorganic Nanomaterials for Combating Gram‐Negative Bacteria

Advanced Functional Materials - Tập 28 Số 44 - 2018
Weiwei Wang1,2,3, Changlong Hao1,2,3, Maozhong Sun1,2,3, Liguang Xu1,2,3, Xiaoling Wu1,2,3, Chuanlai Xu1,2,3, Hua Kuang1,2,3
1Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122 P. R. China
2International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122 P. R. China
3State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122 P. R. China

Tóm tắt

Abstract

Antibiotic resistance is a severe problem worldwide. To address this issue, nanomaterials are applied to combat bacteria. On account of their high biocompatibility, easy surface modifications, and admirable optical properties, quantum dots are widely researched. Here, l‐type cysteine (l‐Cys)‐decorated cadmium telluride (CdTe) nanoparticles (NPs) as an agent to combat bacteria based on their photoinduced oxidation feature are reported. Interestingly, l‐Cys CdTe mixed with salmon sperm DNA and then illuminated by right circularly polarized light (RCP) will lead to reaction oxygen species (ROS) production. To achieve a high local concentration of ROS around the membrane and selective adherence to gram‐negative bacteria (Escherichia coli and Pseudomonas aeruginosa in this study), l‐Cys CdTe is decorated with a polycationic nonapeptide (PCNP‐l‐Cys CdTe). Upon irradiation, the bacterial membrane is severely damaged by the resulting high local ROS concentration. In addition, PCNP‐l‐Cys CdTe, which has intrinsic fluorescence characteristics, shows outstanding fluorescence imaging ability in vivo. It is successfully applied to the fluorescence imaging‐guided bacterial infection therapy.

Từ khóa


Tài liệu tham khảo

10.1038/nmicrobiol.2016.260

10.1021/acs.est.6b00262

10.3389/fmicb.2016.01626

10.1038/nature22308

10.1002/anie.201609277

10.1002/anie.201709365

10.1038/nmicrobiol.2016.176

10.1007/s12274-017-1490-x

10.1021/acs.est.7b04443

10.1007/s12274-016-1270-z

10.1038/s41565-018-0108-0

10.1002/adma.201701644

10.1073/pnas.1710996114

10.1039/C6CS00313C

10.1039/C5CS00041F

10.1021/acs.est.5b00370

10.1038/nnano.2015.141

10.1038/s41565-017-0013-y

10.1002/anie.201712878

10.1002/anie.201401035

10.1021/ja1028843

10.1039/C7EN00832E

10.1039/C7NR08499D

10.2174/1381612824666180219130659

10.1002/anie.201508710

10.1021/ja410800y

10.1021/acs.chemrev.8b00277

10.1038/nnano.2017.23

10.1002/anie.201704851

10.1126/sciadv.aar5931

10.1021/acsnano.7b04199

10.1021/acs.nanolett.6b03143

10.1002/smll.201503629

10.1002/adfm.201303263

10.1038/s41557-018-0083-y

10.1128/mBio.01379-14

10.1038/nmicrobiol.2016.162