TRPV6 Variants Interfere with Maternal-Fetal Calcium Transport through the Placenta and Cause Transient Neonatal Hyperparathyroidism

The American Journal of Human Genetics - Tập 102 - Trang 1104-1114 - 2018
Yoshiro Suzuki1,2, David Chitayat3,4, Hirotake Sawada5, Matthew A. Deardorff6, Heather M. McLaughlin7, Amber Begtrup7, Kathryn Millar3, Jennifer Harrington8, Karen Chong3, Maian Roifman3, Katheryn Grand6, Makoto Tominaga1,2, Fumio Takada9,10, Shirley Shuster3, Megumi Obara5, Hiroshi Mutoh11, Reiko Kushima12, Gen Nishimura13
1Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
2Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
3The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1Z5, Canada
4Division of Clinical Genetics and Metabolism, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
5Division of Pediatrics, Department of Developmental and Urological-Reproductive Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
6Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
7GeneDx, Gaithersburg, MD 20877 USA
8Division of Endocrinology and Metabolism, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
9Department of Medical Genetics and Genomics, Graduate School of Medical Sciences, Kitasato University, Kanagawa 252-0375, Japan
10Division of Genetics and Genomics, Center for Clinical Genetics and Genomics, Kitasato University Hospital, Kanagawa 252-0374, Japan
11Department of Neonatology, Tokyo Metropolitan Children’s Medical Center, Tokyo 183-8561, Japan
12Department of Neonatology, Tokyo Metropolitan Bokutoh Hospital, Tokyo 130-8575, Japan
13Intractable Disease Center, Saitama Medical University Hospital, Saitama 350-1298, Japan

Tài liệu tham khảo

Salles, 2016, Bone metabolism during pregnancy, Ann. Endocrinol. (Paris), 77, 163, 10.1016/j.ando.2016.04.004 Tanaka, 2015, Mutations in SPATA5 are associated with microcephaly, intellectual disability, seizures, and hearing loss, Am. J. Hum. Genet., 97, 457, 10.1016/j.ajhg.2015.07.014 Peng, 2001, Structural conservation of the genes encoding CaT1, CaT2, and related cation channels, Genomics, 76, 99, 10.1006/geno.2001.6606 Fecher-Trost, 2013, The in vivo TRPV6 protein starts at a non-AUG triplet, decoded as methionine, upstream of canonical initiation at AUG, J. Biol. Chem., 288, 16629, 10.1074/jbc.M113.469726 Hughes, 2008, Parallel selection on TRPV6 in human populations, PLoS ONE, 3, e1686, 10.1371/journal.pone.0001686 Zhou, 2013, Identification of a splice variant of mouse TRPA1 that regulates TRPA1 activity, Nat. Commun., 4, 2399, 10.1038/ncomms3399 Nilius, 2000, Whole-cell and single channel monovalent cation currents through the novel rabbit epithelial Ca2+ channel ECaC, J. Physiol., 527, 239, 10.1111/j.1469-7793.2000.00239.x Bödding, 2002, The recombinant human TRPV6 channel functions as Ca2+ sensor in human embryonic kidney and rat basophilic leukemia cells, J. Biol. Chem., 277, 36656, 10.1074/jbc.M202822200 Nilius, 2003, The carboxyl terminus of the epithelial Ca(2+) channel ECaC1 is involved in Ca(2+)-dependent inactivation, Pflugers Arch., 445, 584, 10.1007/s00424-002-0923-9 Nilius, 2002, Fast and slow inactivation kinetics of the Ca2+ channels ECaC1 and ECaC2 (TRPV5 and TRPV6). Role of the intracellular loop located between transmembrane segments 2 and 3, J. Biol. Chem., 277, 30852, 10.1074/jbc.M202418200 Belkacemi, 2004, Calbindin-D9k (CaBP9k) localization and levels of expression in trophoblast cells from human term placenta, Cell Tissue Res., 315, 107, 10.1007/s00441-003-0811-4 Hacker, 2012, Role of calcium during pregnancy: maternal and fetal needs, Nutr. Rev., 70, 397, 10.1111/j.1753-4887.2012.00491.x Parkes, 2013, Parathyroid and calcium metabolism disorders during pregnancy, Gynecol. Endocrinol., 29, 515, 10.3109/09513590.2012.754880 Pitkin, 1985, Calcium metabolism in pregnancy and the perinatal period: a review, Am. J. Obstet. Gynecol., 151, 99, 10.1016/0002-9378(85)90434-X Egbuna, 2008, Hypercalcaemic and hypocalcaemic conditions due to calcium-sensing receptor mutations, Best Pract. Res. Clin. Rheumatol., 22, 129, 10.1016/j.berh.2007.11.006 Lietman, 2009, A novel loss-of-function mutation, Gln459Arg, of the calcium-sensing receptor gene associated with apparent autosomal recessive inheritance of familial hypocalciuric hypercalcemia, J. Clin. Endocrinol. Metab., 94, 4372, 10.1210/jc.2008-2484 Nesbit, 2013, Mutations in AP2S1 cause familial hypocalciuric hypercalcemia type 3, Nat. Genet., 45, 93, 10.1038/ng.2492 Wagener, 2009, Adaptor protein-2 interaction with arrestin regulates GPCR recycling and apoptosis, Traffic, 10, 1286, 10.1111/j.1600-0854.2009.00957.x Nesbit, 2013, Mutations affecting G-protein subunit α11 in hypercalcemia and hypocalcemia, N. Engl. J. Med., 368, 2476, 10.1056/NEJMoa1300253 Li, 2016, Association of mutations in SLC12A1 encoding the NKCC2 cotransporter with neonatal primary hyperparathyroidism, J. Clin. Endocrinol. Metab., 101, 2196, 10.1210/jc.2016-1211 Unger, 2005, Mucolipidosis II presenting as severe neonatal hyperparathyroidism, Eur. J. Pediatr., 164, 236, 10.1007/s00431-004-1591-x Glass, 1981, Transient neonatal hyperparathyroidism secondary to maternal pseudohypoparathyroidism, Arch. Dis. Child., 56, 565, 10.1136/adc.56.7.565 Lee, 2009, Uterine and placental expression of TRPV6 gene is regulated via progesterone receptor- or estrogen receptor-mediated pathways during pregnancy in rodents, Reprod. Biol. Endocrinol., 7, 49, 10.1186/1477-7827-7-49 Bianco, 2007, Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene, J. Bone Miner. Res., 22, 274, 10.1359/jbmr.061110 Woudenberg-Vrenken, 2012, Functional TRPV6 channels are crucial for transepithelial Ca2+ absorption, Am. J. Physiol. Gastrointest. Liver Physiol., 303, G879, 10.1152/ajpgi.00089.2012 Peng, 2000, Human calcium transport protein CaT1, Biochem. Biophys. Res. Commun., 278, 326, 10.1006/bbrc.2000.3716 Weissgerber, 2011, Male fertility depends on Ca2+ absorption by TRPV6 in epididymal epithelia, Sci. Signal., 4, ra27, 10.1126/scisignal.2001791 Fecher-Trost, 2017, TRPV6: From identification to function, Cell Calcium, 67, 116, 10.1016/j.ceca.2017.04.006 Wissenbach, 2001, Expression of CaT-like, a novel calcium-selective channel, correlates with the malignancy of prostate cancer, J. Biol. Chem., 276, 19461, 10.1074/jbc.M009895200 Peng, 2001, CaT1 expression correlates with tumor grade in prostate cancer, Biochem. Biophys. Res. Commun., 282, 729, 10.1006/bbrc.2001.4638 Suzuki, 2008, Calcium channel TRPV6 is involved in murine maternal-fetal calcium transport, J. Bone Miner. Res., 23, 1249, 10.1359/jbmr.080314 Saotome, 2016, Crystal structure of the epithelial calcium channel TRPV6, Nature, 534, 506, 10.1038/nature17975 Niemeyer, 2001, Competitive regulation of CaT-like-mediated Ca2+ entry by protein kinase C and calmodulin, Proc. Natl. Acad. Sci. USA, 98, 3600, 10.1073/pnas.051511398 Lambers, 2004, Regulation of the mouse epithelial Ca2(+) channel TRPV6 by the Ca(2+)-sensor calmodulin, J. Biol. Chem., 279, 28855, 10.1074/jbc.M313637200 Hoenderop, 2001, Function and expression of the epithelial Ca(2+) channel family: comparison of mammalian ECaC1 and 2, J. Physiol., 537, 747, 10.1113/jphysiol.2001.012917 Phelps, 2008, Structural analyses of the ankyrin repeat domain of TRPV6 and related TRPV ion channels, Biochemistry, 47, 2476, 10.1021/bi702109w Bosch, 2016, Searching for a cure for cystic fibrosis. A 25-year quest in a nutshell, Eur. J. Pediatr., 175, 1, 10.1007/s00431-015-2664-8