Numerical and experimental investigation of kerf depth effect on high-frequency phased array transducer
Tài liệu tham khảo
Shung, 2009, High frequency ultrasonic imaging, J. Med. Ultrasound, 17, 25, 10.1016/S0929-6441(09)60012-6
Pedersen, 2010, Fabrication of high-frequency pMUT arrays on silicon substrates, IEEE Trans. Ultrason., Ferroelect., Freq. Contr, 57, 1470, 10.1109/TUFFC.2010.1566
Wu, 2008, High-frequency Piezoelectric PZT films micromachined ultrasonic arrays, IEEE Trans. Ultrason. Symp., 1222
Lukacs, 2006, Performances and characterizations of new micromachined high-frequency linear arrays, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 53, 1719, 10.1109/TUFFC.2006.105
Cannata, 2008, A kerfless 30MHz linear ultrasonic array, Proc. IEEE Ultrasonics Symp., 109
Liu, 2008, High-frequency (50–100MHz) medical ultrasound transducer arrays produced by micromachining bulk PZT materials, Proc. IEEE Ultrason. Symp., 690
Zhou, 2010, Micro-machined high-frequency (80MHz) PZT thick film linear arrays, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 57, 2213, 10.1109/TUFFC.2010.1680
Wu, 2009, Very high frequency (beyond 100MHz) PZT kerfless linear arrays, IEEE Trans. Ultrason., Ferroelect., Freq. Contr, 25, 2304, 10.1109/TUFFC.2009.1311
Wu, 2008, High-frequency (>100MHz) PZT thick film transducers and kerfless arrays, IEEE Ultrason. Symp.1, 1
Ito, 1995, A 100MHz ultrasonic transducer arrays using ZnO thin films, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 42, 316, 10.1109/58.365245
K. Kushida, Y. Ito, H. Takeuchi, H. Kanda, K. Sugawara. 100MHz band ultrasonic array transducers utilizing epitaxially grown ZnO films, Ultrasonics Int. 91 Conf. Proc., 1991, pp. 379–382.
Ito, 1992, Thin-film ZnO ultrasonic transducer arrays for operation at 100MHz, Ferroelectrics, 134, 325, 10.1080/00150199208015607
Ito, 1993, High-frequency ultrasonic transducer arrays using ZnO thin films, IEEE Ultrason. Symp., 1117, 10.1109/ULTSYM.1993.339592
Ritter, 2002, A 30-MHz piezo-composite ultrasound array for medical imaging applications, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 49, 217, 10.1109/58.985706
Liu, 2001, Interdigital pair bonding for high frequency (20–50MHz) ultrasonic composite transducers, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 48, 299, 10.1109/58.896143
Hu, 2006, Plasma etching of proton-exchanged lithium niobate, J. Vac. Sci. Technol. A, 24, 1012, 10.1116/1.2207150
Queste, 2008, DRIE of non-conventional materials: first results, 4mnetorg, 2
Wang, 2009, SU-8 based nanocomposites for acoustical matching layer, IEEE Trans. Ultrason., Ferroelect., Freq. Contr, 56, 1483, 10.1109/TUFFC.2009.1204
Benchabane, 2009, Highly selective electroplated nickel mask for lithium niobate dry etching, J. Appl. Phys., 105, 094109, 10.1063/1.3125315
K. Grosh, J. M. Dodson, Y. Lin. <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.2024>.
Hosten, 2008, Finite element simulation of the generation detection of by air-coupled transducers of guided waves in viscoelastic anisotropic materials, J. Acoust. Soc. Am., 123, 1963, 10.1121/1.2885742
J. Y. Zhang, W. J. Xu, J. Carlier, X. M. Ji, Modelling and simulation of high-frequency (100MHz) ultrasonic linear arrays based on single crystal LiNbO3, Ultrasonics, 2011, doi: 10.1016/j.ultras.2011.06.009