Numerical and experimental investigation of kerf depth effect on high-frequency phased array transducer

Ultrasonics - Tập 52 - Trang 223-229 - 2012
J.Y. Zhang1,2, W.J. Xu2, J. Carlier2, X.M. Ji1, S. Queste3, B. Nongaillard2, Y.P. Huang1
1ASIC and System State Key Lab, Department of Microelectronics, Fudan University, 200433 Shanghai, China
2Département OAE, IEMN, CNRS UMR 8520, Université de Valenciennes, 59313 Valenciennes, France
3Institut FEMTO-ST, CNRS UMR 6174, Université de Franche-Comté, 25044 Besançon, France

Tài liệu tham khảo

Shung, 2009, High frequency ultrasonic imaging, J. Med. Ultrasound, 17, 25, 10.1016/S0929-6441(09)60012-6 Pedersen, 2010, Fabrication of high-frequency pMUT arrays on silicon substrates, IEEE Trans. Ultrason., Ferroelect., Freq. Contr, 57, 1470, 10.1109/TUFFC.2010.1566 Wu, 2008, High-frequency Piezoelectric PZT films micromachined ultrasonic arrays, IEEE Trans. Ultrason. Symp., 1222 Lukacs, 2006, Performances and characterizations of new micromachined high-frequency linear arrays, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 53, 1719, 10.1109/TUFFC.2006.105 Cannata, 2008, A kerfless 30MHz linear ultrasonic array, Proc. IEEE Ultrasonics Symp., 109 Liu, 2008, High-frequency (50–100MHz) medical ultrasound transducer arrays produced by micromachining bulk PZT materials, Proc. IEEE Ultrason. Symp., 690 Zhou, 2010, Micro-machined high-frequency (80MHz) PZT thick film linear arrays, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 57, 2213, 10.1109/TUFFC.2010.1680 Wu, 2009, Very high frequency (beyond 100MHz) PZT kerfless linear arrays, IEEE Trans. Ultrason., Ferroelect., Freq. Contr, 25, 2304, 10.1109/TUFFC.2009.1311 Wu, 2008, High-frequency (>100MHz) PZT thick film transducers and kerfless arrays, IEEE Ultrason. Symp.1, 1 Ito, 1995, A 100MHz ultrasonic transducer arrays using ZnO thin films, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 42, 316, 10.1109/58.365245 K. Kushida, Y. Ito, H. Takeuchi, H. Kanda, K. Sugawara. 100MHz band ultrasonic array transducers utilizing epitaxially grown ZnO films, Ultrasonics Int. 91 Conf. Proc., 1991, pp. 379–382. Ito, 1992, Thin-film ZnO ultrasonic transducer arrays for operation at 100MHz, Ferroelectrics, 134, 325, 10.1080/00150199208015607 Ito, 1993, High-frequency ultrasonic transducer arrays using ZnO thin films, IEEE Ultrason. Symp., 1117, 10.1109/ULTSYM.1993.339592 Ritter, 2002, A 30-MHz piezo-composite ultrasound array for medical imaging applications, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 49, 217, 10.1109/58.985706 Liu, 2001, Interdigital pair bonding for high frequency (20–50MHz) ultrasonic composite transducers, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 48, 299, 10.1109/58.896143 Hu, 2006, Plasma etching of proton-exchanged lithium niobate, J. Vac. Sci. Technol. A, 24, 1012, 10.1116/1.2207150 Queste, 2008, DRIE of non-conventional materials: first results, 4mnetorg, 2 Wang, 2009, SU-8 based nanocomposites for acoustical matching layer, IEEE Trans. Ultrason., Ferroelect., Freq. Contr, 56, 1483, 10.1109/TUFFC.2009.1204 Benchabane, 2009, Highly selective electroplated nickel mask for lithium niobate dry etching, J. Appl. Phys., 105, 094109, 10.1063/1.3125315 K. Grosh, J. M. Dodson, Y. Lin. <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.2024>. Hosten, 2008, Finite element simulation of the generation detection of by air-coupled transducers of guided waves in viscoelastic anisotropic materials, J. Acoust. Soc. Am., 123, 1963, 10.1121/1.2885742 J. Y. Zhang, W. J. Xu, J. Carlier, X. M. Ji, Modelling and simulation of high-frequency (100MHz) ultrasonic linear arrays based on single crystal LiNbO3, Ultrasonics, 2011, doi: 10.1016/j.ultras.2011.06.009