Influence of measurement noise and electrode mislocalisation on EEG dipole-source localisation

Medical & Biological Engineering & Computing - Tập 38 - Trang 287-296 - 2000
G. Van Hoey1,2, B. Vanrumste1,2, M. D'Havé2, R. Van de Walle1, I. Lemahieu1, P. Boon2
1Department of Electronics & Information Systems, Ghent University, Ghent, Belgium
2Epilepsy Monitoring Unit, Department of Neurology, Ghent University Hospital, Ghent, Belgium

Tóm tắt

Measurement noise in the electro-encephalogram (EEG) and inaccurate formation about the locations of the EEG electrodes on the head induce localisation errors in the results of EEG dipole source analysis. These errors are studied by performing dipole source localisation for simulated electrode potentials in a spherical head model, for a range of different dipole locations and for two different numbers (27 and 148) of electrodes. Dipole source localisation is performed by iteratively minimising the residual energy (RE), using the simplex algorithm. The ratio of the dipole localisation error (cm) to the noise level (%) of Gaussian measurement noise amounts to 0.15 cm/% and 0.047 cm/% for the 27 and 148 electrode configurations, respectively, for a radial dipole with 40% eccentricity The localisation error due to noise can be reduced by taking into account multiple time instants of the measured potentials. In the case of random displacements of the EEG electrodes, the ratio of dipole localisation errors to electrode location errors amounts to 0.78 cm−1 cm and 0.27 cm−1 cm for the 27 and 148 electrode configurations, respectively. It is concluded that it is important to reduce the measurement noise, and particularly the electrode mislocalisation, as the influence of the latter is not reduced by taking into account multiple time instants.

Tài liệu tham khảo

Achim, A. (1995): Cerebral source localization paradigms: Spatiotemporal source modeling’,Brain Cognition,27, pp. 256–287 Awada, K. A., Jackson, D.R., Williams, J. T., Wilton, D. R., Baumann, S. B., andPapanicolaou, A. C. (1997): ‘Computational aspects of finite element modeling in EEG source localization,”IEEE Trans.,BME-44, 8, pp. 736–752 Boon, P. andD'Havé, M. (1995): ‘Interictal and ictal dipole modelling in patients with refractory partial epilepsy’,Acta Neurolog. Scand.,92, pp. 7–18 Boon, P., D'Havé, M., Vonck, K., Baulac, M., Vandekerckhove, T., andDe Reuck, J. (1996): ‘Dipole modeling in epilepsy surgery candidates’,Epilepsia,38, pp. 208–218 Boon, P., Van Hoey, G., Vanrumste, B., andD'Havé, M. (1997): ‘The versus standard international 10–20 EEG electrode positions and the spherical head model’,Electroencephalogr. Clin. Neurophysiol.,103, (1), pp. 196–197. Abstracts of 14th Int. Congress of EEG and Clinical Neurophysiology, Florence, Italy, August 24–29, 1997 Buchner, H., Knoll, G., Fuchs, M., Rienäcker, A., Becxkmann, R., Wagner, M., Silny, J., andPesch, J. (1997): ‘Inverse localization of electric dipole current sources in finite element models of the human head’,Electroencephalogr. Clin. Neurophysiol.,102, pp. 267–278 Cuffin, N. B. (1985): ‘A comparison of moving dipole inverse solutions using EEG's and MEG's’,IEEE Trans.,BME-32, pp. 905–910 Cuffin, N. B. (1986): ‘Effects of measurement errors and noise on MEG moving dipole inverse solutions’,IEEE Trans.,BME-33, pp. 845–861 Cuffin, N. B. (1995): ‘A method for localizing EEG sources in realistic head models’,IEEE Trans. BME-42, pp. 000–000 Eberole, J. S. andWade, P.B. (1990): ‘Spike voltage topography and equivalent dipole localization in complex partial epilepsy’,Brait Topography,3, pp. 21–34 Fuchs, M., Drenckhahn, R., Wischmann, H.-A., andWagner, M. (1998a): ‘An improved boundary element method for realistic volume-conductor modeling’,IEEE Trans.,BME-45, pp. 980–997 Fuchs, M., Wagner, M., Wischmann, H.-A., Köhler, T., Theißen, A., Drenckahn, R., andBuchner, H. (1998b): ‘Improving source reconstructions by combining bioelectric and biomagnetic data’,Electroencephalogr. Clin. Neurophysiol.,107, pp. 93–111 Gaumond, R. P., Lin, J.-H., andGeselowitz, D. B. (1983): ‘Accuracy of dipole localization with a spherical homogeneous model’,IEEE Trans.,BME-30, pp. 29–34 Geselowitz, D. B. (1967): ‘On bioelectric potentials in an inhomogeneous volume conductor’,Biophys. J.,7, pp. 1–11 Hämäinen, M.S. andIlmoniemi, R. J. (1994): ‘Interpreting magnetic fields of the brain: Minimum norm estimates’,Med. Biol. Eng. Comput.,32, pp. 35–42 Hara J., Musha, T., andShankle, W. R. (1999): ‘Approximating dipole from human EEG activity: The effect of dipole source configuration on dipolarity using single dipole models’,IEEE Trans,BME-46, pp. 125–129 Heinonen, T., Eskola, H., Dastidar, P., Laarne, P., andMalmivuo, J. (1997): ‘Segmentation of T1 MR scans for reconstruction of resistive head models’,Comput. Methods Programs Biomed. 54, pp. 173–181 Hughes, J. R. (1989): ‘The significance of the interictal spike discharge: A review’,J. Clin. Neurophysiol. 6, pp. 207–226 Jasper, H. (1958): ‘Report of committee on methods of clinical exam in EEG’,Electroencephalogr. Clin. Neurophysiol.,10, pp. 370–375 Kavanagh, R. N., Darcey, T. M., Lehmann, D., andFender, D. R. (1978): ‘Evaluation of methods for three-dimensional localization of electrical sources in the human brain’,IEEE Trans.,BME-25, pp. 421–429 Khosla, D., Don, M., andKwong, B. (1999): ‘Spatial mislocalization of EEG electrodes — effects on accuracy of dipole estimation’,Clin. Neurophysiol.,110, pp. 261–271 Kuriki, S., Murase, M., andTakeuchi, F. (1989): ‘Locating accuracy of a current source of neuromagnetic responses: Simulation study for a single current dipole in a spherical conductor’,Electroencephalogr. Clin. Neurophysiol.,73, pp. 499–506 Lemieux, L., McBride, A., andHand, J. W. (1996): ‘Calculation of electrical potentials on the surface of a realistic head model by finite differences’,Phys. Med. Biol.,41, pp. 1079–1091 Lopes Da Silva, F. H. (1993): ‘Event-related potentials: Methodology and quantification’ inNiedermeyer, E. andLopes Da Silva, F. (Eds.) ‘Electroencephalography: basic principles, clinical applications and related fields’ (Williams and Wilkins, Baltimore, Maryland), 3rd edn, chap. 49, pp. 877–886 Malmivuo, J. andPlonsey, R. (1995): ‘Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields’ (Oxford University Press, New York) Merlet, I. andGotman, J. (1999): ‘Rehability of dipole models of epileptic spikes’,Clin. Neurophysiol.,110, pp. 1013–1028. Mosher, J. C., Lewis, P. S., andLeahy, R. M. (1992): ‘Multiple dipole modeling and localization from spatio-temporal MEG data’,IEEE Trans.,BME-39, pp. 541–557 Mosher, J. C., Spencer, M. E., Leahy, R. M., andLewis, P. S. (1993): ‘Error bounds for EEG and MEG dipole source localization’Electroencephalogr. Clin. Neurophysiol.,86, pp. 303–321 Nelder, J. A. andMead, R. (1965): ‘A simplex method for function minimization’,Comput. J.,7, pp. 308–313 Niedermeyer, E. (1993): ‘Epileptic seizure disorders’ inNiedermeyer, E. andLopes da Silva, F. (Eds) ‘Electroencephalography: basic principles, clinical applications and related fields’ (Williams and Wilkins, Baltimore, Maryland), 3rd edn, chap. 28, pp. 461–564 Ogura, Y. andSekihara, K. (1993): ‘Relationship between dipole parameter estimation errors and measurement conditions in magnetoencephalography’,IEEE Trans.,BME-40, pp. 919–924 Press, W. H., Teukolsky, S. A., Vetterling, W. T., andFlannery, B. P. (1997), ‘Numerical Recipes in C: the art of scientific computing’ (Cambridge University Press), 2nd edn Salu, Y., Cohen, L. G., Rose, D., Sato, S., Kufta, C., andHallett, M. (1990): ‘An improved method for localizing electric brain dipoles’,IEEE Trans.,BME-37, pp. 699–705 Scherg, M. (1990): ‘Fundamentals of dipole source potential analysis’ inGrandori, F., Hoke, M., andRomani, G. L. (Eds) ‘Advances in audiology’ (S. Karger, Basel, Switzerland), Vol. 6, pp. 40–69 Scherg, M. andvon Cramon, D. (1986): ‘Evoked dipole source potentials of the human auditory cortex’,Electroencephalogr. Clin. Neurophysiol.,65, pp. 344–360 Stoica, P. andNehorai, A. (1989): ‘MUSIC, maximum likelihood, and Cramer-Rao bound’,IEEE Trans. Acoust. Speech Signal Process.,37, pp. 720–741 Stok, C. J. (1987): ‘The influence of model parameters on EEG/MEG single dipole source estimation’,IEEE Trans,BME-34, pp. 289–296 Strang, G. (1976): ‘Linear algebra and its applications’ (Academic Press, New York) Towle, V. L., Bolanos J., Suarez, D., Tan, K., Grzeszczuk, R., Levin, D. N., Cakmur, R., Frank, S. A., andSpire, J.-P. (1993): ‘The spatial location of EEG electrodes: Locating the bestp-fitting sphre relative to cortical anatomy’,Electroencephalogr. Clin. Neurophysiol.,86, pp. 1–6 Vanrumste, B., Van Hoey, G., Boon, P., D'Havé, M., andLemahiel, I. (1998): ‘The accuracy of the finite difference method applied in the forward problem of EEG source analysis’. Proc. 8th Int. IMEKO Conf. Measurement in Clinical Medicine, Dubrovnik, pp. 35–38 Wang, M. Y., Maurer, Calvin, R. J., Fitzpatrick, J. M., andMaciunas, R. J. (1996): ‘An automatic technique for finding and localizing externally attached markers in CT and MR volume images of the head’,IEEE Trans.,BME-43, pp. 627–637 Zanow, F. (1997), ‘Realistically shaped models of the head and their applications to EEG and MEG,’ PhD thesis, University of Twente, The Netherlands