The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets
Tài liệu tham khảo
Albarède, 2006, Gamma-ray irradiation in the early Solar System and the conundrum of the 176Lu decay constant, Geochim. Cosmochim. Acta, 70, 1261, 10.1016/j.gca.2005.09.027
Allègre, 2001, Chemical composition of the Earth and the volatility control on planetary genetics, Earth Planet. Sci. Lett., 185, 49, 10.1016/S0012-821X(00)00359-9
Amelin, 2005, Meteorite phosphates show constant 176Lu decay rate since 4557 million years ago, Science, 310, 839, 10.1126/science.1117919
Amelin, 2004, Sm–Nd systematics of chondrites, Earth Planet. Sci. Lett., 223, 267, 10.1016/j.epsl.2004.04.025
Begemann, 2001, Call for an improved set of decay constants for geochronological use, Geochim. Cosmochim. Acta, 65, 111, 10.1016/S0016-7037(00)00512-3
Bizzarro, 2003, Early history of the Earth's crust–mantle system inferred from hafnium isotopes in chondrites, Nature, 421, 931, 10.1038/nature01421
Bizzarro, 2005, Rapid timescales for accretion and melting of differenciated planetesimals inferred from 26Al–26Mg chronometry, Astrophys. J., 632, L41, 10.1086/497638
Blichert-Toft, 1997, The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system, Earth Planet. Sci. Lett., 148, 243, 10.1016/S0012-821X(97)00040-X
Blichert-Toft, 2008, Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust, Earth Planet. Sc. Lett., 265, 686, 10.1016/j.epsl.2007.10.054
Blichert-Toft, 1997, Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS, Contrib. Mineral. Petrol., 127, 248, 10.1007/s004100050278
Blichert-Toft, 2002, 147Sm–143Nd and 176Lu–176Hf in eucrites and the differentiation of the HED parent body, Earth Planet. Sci. Lett., 204, 167, 10.1016/S0012-821X(02)00976-7
Blichert-Toft, 2005, Geochemical segmentation of the Mid-Atlantic Ridge North of Iceland and ridge-hotspot interaction in the North Atlantic, Geochem. Geophys. Geosyst., 6, 10.1029/2004GC000788
Bonal, 2006, Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter, Geochim. Cosmochim. Acta, 70, 1849, 10.1016/j.gca.2005.12.004
Bonal, 2007, Organic matter and metamorphic history of CO chondrites, Geochim. Cosmochim. Acta, 71, 1605, 10.1016/j.gca.2006.12.014
Bourdon, 2007, The early terrestrial crust, Comptes Rendus Geosci., 339, 928, 10.1016/j.crte.2007.09.002
Bouvier, 2005, The age of SNC meteorites and the antiquity of the Martian surface, Earth Planet. Sci. Lett., 240, 221, 10.1016/j.epsl.2005.09.007
Bouvier, 2006, Effects of impacts on Sm–Nd and Lu–Hf internal isochrons of eucrites, Meteorit. Planet. Sci., 41
Bouvier, 2007, Pb–Pb dating constraints on the accretion and cooling history of chondrites, Geochim. Cosmochim. Acta, 71, 1583, 10.1016/j.gca.2006.12.005
Bouvier, 2008, The case for old shergottites, Earth Planet. Sc. Lett., 266, 105, 10.1016/j.epsl.2007.11.006
Boyet, 2005, 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth, Science, 309, 576, 10.1126/science.1113634
Boyet, 2007, A highly depleted moon or a non-magma ocean origin for the lunar crust?, Earth Planet. Sci. Lett., 262, 505, 10.1016/j.epsl.2007.08.009
Boyet, 2003, 142Nd evidence for early Earth differentiation, Earth Planet. Sci. Lett., 214, 427, 10.1016/S0012-821X(03)00423-0
Brearley, 1998, Chondritic meteorites, vol. 36
Carlson, 2007, Chondrite barium, neodymium, and samarium isotopic heterogeneity and early Earth differentiation, Science, 316, 1175, 10.1126/science.1140189
Caro, 2003, 146Sm–142Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth's mantle, Nature, 423, 428, 10.1038/nature01668
Caro, 2006, High-precision 142Nd/144Nd measurements in terrestrial rocks: constraints on the early differentiation of the Earth's mantle, Geochim. Cosmochim. Acta, 70, 164, 10.1016/j.gca.2005.08.015
Caro, 2008, Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon, Nature., 452, 336, 10.1038/nature06760
Clayton, 2003, Oxygen isotopes in the solar system, Space Sci. Rev., 106, 19, 10.1023/A:1024669116828
Crozaz, 2003, Chemical alteration and REE mobilization in meteorites from hot and cold deserts, Geochim. Cosmochim. Acta, 67, 4727, 10.1016/j.gca.2003.08.008
Debaille, 2007, Coupled 142Nd–143Nd evidence for a protracted magma ocean in Mars, Nature, 450, 525, 10.1038/nature06317
Debaille, 2008, Duration of a magma ocean and subsequent mantle overturn in Mars: evidence from nakhlites
Debaille, 2008, Martian mantle mineralogy investigated by the 176Lu–176Hf and 147Sm–143Nd systematics of shergottites, Earth Planet. Sci. Lett., 269, 186, 10.1016/j.epsl.2008.02.008
DePaolo, 1976, Nd isotopic variations and petrogenetic models, Geophys. Res. Lett., 3, 249, 10.1029/GL003i005p00249
Drake, 2002, Determining the composition of the Earth, Nature, 416, 39, 10.1038/416039a
Foley, 2005, The early differenciation history of Mars from 182W–142Nd isotope systematics in the SNC meteorites, Geochim. Cosmochim. Acta, 69, 4557, 10.1016/j.gca.2005.05.009
Grinyer, 2003, Half-life of 176Lu, Phys. Rev. C., 67, 10.1103/PhysRevC.67.014302
Hamilton, 1983, Sm–Nd studies of Archaean metasediments and metavolcanics from West Greenland and their implications for the Earth's early history, Earth Planet. Sci. Lett., 62, 263, 10.1016/0012-821X(83)90089-4
Harrison, 2005, Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga, Science, 310, 1947, 10.1126/science.1117926
Huss, 2006, Thermal metamorphism in chondrites, 567
Jacobsen, 1980, Sm–Nd isotopic evolution of chondrites, Earth Planet. Sci. Lett., 50, 139, 10.1016/0012-821X(80)90125-9
Jacobsen, 1984, Sm–Nd isotopic evolution of chondrites and achondrites, II, Earth Planet. Sci. Lett., 67, 137, 10.1016/0012-821X(84)90109-2
Javoy, 1995, The integral enstatite chondrite model of the Earth, Geophys. Res. Lett., 22, 2219, 10.1029/95GL02015
Kallemeyn, 1991, The compositional classification of chondrites: V. The Karoonda (CK) group of carbonaceous chondrites, Geochimica et Cosmochimica Acta, 55, 881, 10.1016/0016-7037(91)90348-9
Keller, 1994, Aqueous alteration of the Bali CV3 chondrite: evidence from mineralogy, mineral chemistry, and oxygen isotopic compositions, Geochim. Cosmochim. Acta, 58, 5589, 10.1016/0016-7037(94)90252-6
Kleine, 2005, Early core formation in asteroids and late accretion of chondrite parent bodies: evidence from 182Hf–182W in CAIs, metal-rich chondrites, and iron meteorites, Geochim. Cosmochim. Acta, 69, 5805, 10.1016/j.gca.2005.07.012
Kostitsyn, 2004, Terrestrial and chondritic Sm–Nd and Lu–Hf isotopic systems: are they identical?, Petrology, 12, 397
Kunihiro, 2004, Initial 26Al/27Al in carbonaceous-chondrite chondrules: too little 26Al to melt asteroids, Geochim. Cosmochim. Acta, 68, 2947, 10.1016/j.gca.2004.02.006
Larimer, 1979, The condensation and fractionation of refractory lithophile elements, Icarus, 40, 446, 10.1016/0019-1035(79)90038-1
Leya, 2008, Titanium isotopes and the radial heterogeneity of the solar system, Earth Planet. Sci. Lett., 266, 233, 10.1016/j.epsl.2007.10.017
Lugmair, 1992, Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra Dos Reis, Geochim. Cosmochim. Acta, 56, 1673, 10.1016/0016-7037(92)90234-A
Lugmair, 1975, Search for extinct 146Sm, 1. The isotopic abundance of 142Nd in the Juvinas meteorite, Earth Planet. Sci. Lett., 27, 79, 10.1016/0012-821X(75)90163-6
Magna, 2006, New constraints on the lithium isotope compositions of the Moon and terrestrial planets, Earth Planet. Sci. Lett., 243, 336, 10.1016/j.epsl.2006.01.005
Meisel, 2001, Osmium isotopic compositions of mantle xenoliths: a global perspective, Geochim. Cosmochim. Acta, 65, 10.1016/S0016-7037(00)00566-4
Meteoritical Bulletin Database, 2008. The Meteoritical Society, http://tin.er.usgs. gov/meteor/.
Nakamura, 1982, Origin and evolution of the Nakhla meteorite inferred from the Sm–Nd and U–Pb systematics and REE, Ba, Sr, Rb and K abundances, Geochim. Cosmochim. Acta, 46, 1555, 10.1016/0016-7037(82)90314-3
Palme, 2001, Chemical and isotopic heterogeneity in protosolar matter, Philos. Trans. R. Soc. Lond., 359, 2061, 10.1098/rsta.2001.0897
Patchett, 1980, A routine high-precision method for Lu–Hf isotope geochemistry and chronology, Contrib. Mineral. Petrol., 75, 263, 10.1007/BF01166766
Patchett, 1980, Lu–Hf total-rock isochron for the eucrite meteorites, Nature, 288, 571, 10.1038/288571a0
Patchett, 1981, Lu/Hf in chondrites and definition of a chondritic Hafnium growth curve, 822
Patchett, 1981, Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes, Contrib. Mineral. Petrol., 78, 279, 10.1007/BF00398923
Patchett, 2004, Lu–Hf and Sm–Nd isotopic systematics in chondrites and their constraints on the Lu–Hf properties of the Earth, Earth Planet. Sci. Lett., 222, 29, 10.1016/j.epsl.2004.02.030
Rankenburg, 2006, Neodymium isotope evidence for a chondritic composition of the Moon, Science, 312, 1369, 10.1126/science.1126114
Richard, 1976, 143Nd/146Nd, a natural tracer: an application to oceanic basalts, Earth Planet. Sci. Lett., 31, 269, 10.1016/0012-821X(76)90219-3
Righter, 2006, Compositional relationships between meteorites and terrestrial planets, 803
Rubin, 1985, Phosphate–sulfide assemblages and Al/Ca ratios in type-3 chondrites, Meteoritics, 20, 479, 10.1111/j.1945-5100.1985.tb00044.x
Scherer, 2001, Calibration of the Lutetium–Hafnium clock, Science, 293, 683, 10.1126/science.1061372
Söderlund, 2004, The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions, Earth Planet. Sci. Lett., 219, 311, 10.1016/S0012-821X(04)00012-3
Tatsumoto, 1981, U–Pb and Lu–Hf systematics of Antarctic meteorites. Proc. 6th Symp. Antarctic meteorites, Mem. Natl. Inst. Polar Res., Tokyo, 237
Teng, 2007, Investigation of magnesium isotope fractionation during basalt differentiation: implications for a chondritic composition of the terrestrial mantle, Earth Planet. Sci. Lett., 261, 84, 10.1016/j.epsl.2007.06.004
Tera, 1997, Radiometric ages of basaltic achondrites and their relation to the early history of the Solar System, Geochim. Cosmochim. Acta, 61, 1713, 10.1016/S0016-7037(97)00018-5
Thrane, 2006, Lu–Hf systematics of the angrite SAH99555, Meteorit. Planet. Sci., 41
Trinquier, 2007, Widespread 54Cr heterogeneity in the inner solar system, Astro. Phys. J., 655, 1179, 10.1086/510360
Unruh, 1984, The Lu–Hf evolution of KREEP, 47
Unruh, 1984, Lu–Hf and Sm–Nd evolution in lunar mare basalts, J. Geophys. Res., 89, B459, 10.1029/JB089iS02p0B459
Vervoort, 1999, Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time, Geochim. Cosmochim. Acta, 63, 533, 10.1016/S0016-7037(98)00274-9
Vervoort, 1996, Constraints on early Earth differentiation from hafnium and neodymium isotopes, Nature, 379, 624, 10.1038/379624a0
Vervoort, 1999, Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system, Earth Planet. Sci. Lett., 168, 79, 10.1016/S0012-821X(99)00047-3
Vervoort, 2000, Hf–Nd isotopic evolution of the lower crust, Earth Planet. Sci. Lett., 181, 115, 10.1016/S0012-821X(00)00170-9
Vervoort, 2004, Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS, Geochim. Geophys. Geosyst, 5