Synthesis of Al2O3-nanowhisker-based HKUST1 MOF composites

Materials Chemistry and Physics - Tập 232 - Trang 446-451 - 2019
Cleiser Thiago Pereira da Silva1, Fernanda Reis Veregue1, Murilo Pereira Moisés1,2, Marcos Rogério Guilherme1,3, Andrelson Wellington Rinaldi1
1Laboratory of Materials Chemistry and Sensors – LMSen, State University of Maringá – UEM. Av. Colombo 5790, CEP, 87020-900, Maringá, PR, Brazil
2Federal Technological University of Paraná (UTFPR). Rua Marcílio Dias, 635 CEP, 86812-460, Apucarana, PR, Brazil
3Cesumar Institute of Science, Technology and Innovation, ICETI, Av. Guerdner, 1610, Jd. Aclimação, Maringá, Paraná, Brazil

Tài liệu tham khảo

Farha, 2010, De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities, Nat. Chem., 2, 944, 10.1038/nchem.834 Li, 1999, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 402, 276, 10.1038/46248 Yaghi, 2003, Reticular synthesis and the design of new materials, Nature, 423, 705, 10.1038/nature01650 Rowsell, 2004, Metal–organic frameworks: a new class of porous materials, Microporous Mesoporous Mater., 73, 3, 10.1016/j.micromeso.2004.03.034 Kitagawa, 2004, Functional porous coordination polymers, Angew. Chem. Int. Ed., 43, 2334, 10.1002/anie.200300610 Xu, 2016, Combining solvent-assisted linker exchange and transmetallation strategies to obtain a new non-catenated nickel (II) pillared-paddlewheel MOF, Inorg. Chem. Commun., 67, 60, 10.1016/j.inoche.2016.03.002 Pereira da Silva, 2016, Synthesis of Zn-BTC metal organic framework assisted by a home microwave oven and their unusual morphologies, Mater. Lett., 182, 231, 10.1016/j.matlet.2016.06.015 Rosi, 2003, Hydrogen storage in microporous metal-organic frameworks, Science, 300, 1127, 10.1126/science.1083440 Millward, 2005, Metal−Organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature, J. Am. Chem. Soc., 127, 17998, 10.1021/ja0570032 Bae, 2008, Carborane-based metal-organic frameworks as highly selective sorbents for CO2 over methane, Chem. Commun., 4135, 10.1039/b805785k Bae, 2009, Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification, J. Mater. Chem., 19, 2131, 10.1039/b900390h Lee, 2009, Metal-organic framework materials as catalysts, Chem. Soc. Rev., 38, 1450, 10.1039/b807080f Sumida, 2011, Carbon dioxide capture in metal–organic frameworks, Chem. Rev., 112, 724, 10.1021/cr2003272 Li, 2011, Metal–organic frameworks for separations, Chem. Rev., 112, 869, 10.1021/cr200190s Suh, 2011, Hydrogen storage in metal–organic frameworks, Chem. Rev., 112, 782, 10.1021/cr200274s Lu, 2017, A mesoporous (3,36)-connected txt-type metal-organic framework constructed by using a naphthyl-embedded ligand exhibiting high CO2 storage and selectivity, Inorganic Chem. Frontiers, 4, 736, 10.1039/C6QI00616G Li, 2017, Size effect of the active sites in UiO-66-supported nickel catalysts synthesized via atomic layer deposition for ethylene hydrogenation, Inorganic Chem. Frontiers, 4, 820, 10.1039/C7QI00056A Rimoldi, 2017, Catalytic zirconium/hafnium-based metal–organic frameworks, ACS Catal., 7, 997, 10.1021/acscatal.6b02923 Liu, 2019, Introducing nonstructural ligands to zirconia-like metal–organic framework nodes to tune the activity of node-supported nickel catalysts for ethylene hydrogenation, ACS Catal., 3198, 10.1021/acscatal.8b04828 Goetjen, 2019, Metal–organic framework supported single site chromium(III) catalyst for ethylene oligomerization at low pressure and temperature, ACS Sustain. Chem. Eng., 7, 2553, 10.1021/acssuschemeng.8b05524 Yu, 2017, A metal-organic framework as a "turn on" fluorescent sensor for aluminum ions, Inorganic Chem. Frontiers, 4, 256, 10.1039/C6QI00362A Yi, 2016, Chemical sensors based on metal–organic frameworks, ChemPlusChem, 81, 675, 10.1002/cplu.201600137 Hosseini, 2013, A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine, Biosens. Bioelectron., 42, 426, 10.1016/j.bios.2012.09.062 da Silva, 2016, AuNp@MOF composite as electrochemical material for determination of bisphenol A and its oxidation behavior study, New J. Chem., 40, 8872, 10.1039/C6NJ00936K Zhang, 2018, A novel dual-signal electrochemical sensor for bisphenol A determination by coupling nanoporous gold leaf and self-assembled cyclodextrin, Electrochim. Acta, 271, 417, 10.1016/j.electacta.2018.03.113 Zhang, 2018, An ultrasensitive electrochemical bisphenol A sensor based on hierarchical Ce-metal-organic framework modified with cetyltrimethylammonium bromide, Sensor. Actuator. B Chem., 261, 425, 10.1016/j.snb.2018.01.170 Petit, 2009, MOF-graphite oxide nanocomposites: surface characterization and evaluation as adsorbents of ammonia, J. Mater. Chem., 19, 6521, 10.1039/b908862h Petit, 2009, MOF–Graphite oxide composites: combining the uniqueness of graphene layers and metal–organic frameworks, Adv. Mater., 21, 4753, 10.1002/adma.200901581 Petit, 2010, Enhanced adsorption of ammonia on metal-organic framework/graphite oxide composites: analysis of surface interactions, Adv. Funct. Mater., 20, 111, 10.1002/adfm.200900880 Ge, 2013, Hierarchically structured metal-organic framework/vertically-aligned carbon nanotubes hybrids for CO2 capture, RSC Adv., 3, 25360, 10.1039/c3ra44250k Bao, 2014, Multi-walled carbon nanotubes @ mesoporous carbon hybrid nanocomposites from carbonized multi-walled carbon nanotubes @ metal–organic framework for lithium sulfur battery, J. Power Sources, 248, 570, 10.1016/j.jpowsour.2013.09.132 Gorka, 2010, Mesoporous metal organic framework-boehmite and silica composites, Chem. Commun., 46, 6798, 10.1039/c0cc01578d Esken, 2011, ZnO@ZIF-8: stabilization of quantum confined ZnO nanoparticles by a zinc methylimidazolate framework and their surface structural characterization probed by CO2 adsorption, J. Mater. Chem., 21, 5907, 10.1039/c1jm10091b Ke, 2011, Facile fabrication of magnetic metal-organic framework nanocomposites for potential targeted drug delivery, J. Mater. Chem., 21, 3843, 10.1039/c0jm01770a Seredych, 2012, Manganese oxide and graphite oxide/MnO2 composites as reactive adsorbents of ammonia at ambient conditions, Microporous Mesoporous Mater., 150, 55, 10.1016/j.micromeso.2011.09.010 Zhang, 2013, Synthesis of Fe3O4@ZIF-8 magnetic core–shell microspheres and their potential application in a capillary microreactor, Chem. Eng. J., 228, 398, 10.1016/j.cej.2013.05.020 Ricco, 2013, Applications of magnetic metal-organic framework composites, J. Mater. Chem., 1, 13033, 10.1039/c3ta13140h Hwang, 2008, Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation, Angew. Chem. Int. Ed., 47, 4144, 10.1002/anie.200705998 Ishida, 2009, One-potN-alkylation of primary amines to secondary amines by gold clusters supported on porous coordination polymers, Gold Bull., 42, 267, 10.1007/BF03214948 Yuan, 2010, A highly active heterogeneous palladium catalyst for the suzuki–miyaura and ullmann coupling reactions of aryl chlorides in aqueous media, Angew. Chem. Int. Ed., 49, 4054, 10.1002/anie.201000576 Huang, 2011, Palladium nanoparticles supported on amino functionalized metal-organic frameworks as highly active catalysts for the Suzuki–Miyaura cross-coupling reaction, Catal. Commun., 14, 27, 10.1016/j.catcom.2011.07.004 Lu, 2012, Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation, Nat. Chem., 4, 310, 10.1038/nchem.1272 Zhang, 2014, Pt-doped graphene oxide/MIL-101 nanocomposites exhibiting enhanced hydrogen uptake at ambient temperature, RSC Adv., 4, 28908, 10.1039/C4RA01540A Distefano, 2013, Highly ordered alignment of a vinyl polymer by host–guest cross-polymerization, Nat. Chem., 5, 335, 10.1038/nchem.1576 Zhu, 2014, Metal-organic framework composites, Chem. Soc. Rev., 43, 5468, 10.1039/C3CS60472A Ahmed, 2014, Composites of metal–organic frameworks: preparation and application in adsorption, Mater. Today, 17, 136, 10.1016/j.mattod.2014.03.002 Zhao, 2013, Aminated graphite oxides and their composites with copper-based metal-organic framework: in search for efficient media for CO2 sequestration, RSC Adv., 3, 9932, 10.1039/c3ra40817e Policicchio, 2013, Cu-BTC/Aminated graphite oxide composites as high-efficiency CO2 capture media, ACS Appl. Mater. Interfaces, 6, 101, 10.1021/am404952z Lin, 2012, Direct synthesis of amine-functionalized MIL-101(Cr) nanoparticles and application for CO2 capture, RSC Adv., 2, 6417, 10.1039/c2ra20641b Lin, 2013, Polyethyleneimine incorporated metal-organic frameworks adsorbent for highly selective CO2 capture, Sci. Rep., 3, 10.1038/srep01859 Chui, 1999, A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n, Science, 283, 1148, 10.1126/science.283.5405.1148 de Souza Santos, 1992, Pseudomorphic formation of aluminas from fibrillar pseudoboehmite, Mater. Lett., 13, 175, 10.1016/0167-577X(92)90216-7 Rowsell, 2006, Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of Metal−Organic frameworks, J. Am. Chem. Soc., 128, 1304, 10.1021/ja056639q Pasternack, 2008, Attachment of 3-(aminopropyl)triethoxysilane on silicon oxide surfaces: dependence on solution temperature, Langmuir, 24, 12963, 10.1021/la8024827 Li, 2013, A MOF/graphite oxide hybrid (MOF: HKUST-1) material for the adsorption of methylene blue from aqueous solution, J. Mater. Chem., 1, 10292, 10.1039/c3ta11478c Sing, 1985, REPORTING PHYSISORPTION DATA FOR GAS SOLID SYSTEMS WITH SPECIAL REFERENCE TO THE DETERMINATION OF SURFACE-AREA AND POROSITY (RECOMMENDATIONS 1984), Pure Appl. Chem., 57, 603, 10.1351/pac198557040603 Gregg, 1982 Zhou, 2014, Enhanced room-temperature hydrogen storage capacity in Pt-loaded graphene oxide/HKUST-1 composites, Int. J. Hydrogen Energy, 39, 2160, 10.1016/j.ijhydene.2013.11.109