Will the Historic Southeasterly Wind over the Equatorial Pacific in March 2022 Trigger a Third-year La Niña Event?

Advances in Atmospheric Sciences - Tập 40 Số 1 - Trang 6-13 - 2023
Xiaodong Fang1, Fei Zheng2, Kexin Li2, Zeng‐Zhen Hu3, Hong‐Li Ren4, Jie Wu5, Xingrong Chen6, Weihua Lan7, Yuan Yuan5, Li‐Cheng Feng6, Qiufang Cai7, Jiang Zhu2
1Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
2International Center for Climate and Environment Science (ICCES), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
3Climate Prediction Center, NCEP/NWS/NOAA, College Park, MD, 20740, USA
4State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
5National Climate Center, Beijing 100081, China
6National Marine Environmental Forecasting Center, Beijing, 100081, China
7Mailbox 5111, Beijing 100094, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

An, S. I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17(12), 2399–2412, https://doi.org/10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2.

Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

Chen, N., X. H. Fang, and J.-Y. Yu, 2022: A multiscale model for El Niño complexity. npj Climate and Atmospheric Science, 5(1), 16, https://doi.org/10.1038/s41612-022-00241-x.

DiNezio, P. N., and Coauthors, 2017: A 2 year forecast for a 60–80% chance of La Niña in 2017–2018. Geophys. Res. Lett., 44(22), 11624–11635, https://doi.org/10.1002/2017GL074904.

Fang, X. H., and M. Mu, 2018: Both air-sea components are crucial for El Niño forecast from boreal spring. Scientific Reports, 8, 10501, https://doi.org/10.1038/s41598-018-28964-z.

Fang, X. H., and R. H. Xie, 2020: A brief review of ENSO theories and prediction. Science China Earth Sciences, 63(4), 476–491, https://doi.org/10.1007/s11430-019-9539-0.

Fang, X. H., and F. Zheng, 2021: Effect of the air-sea coupled system change on the ENSO evolution from boreal spring. Climate Dyn., 57(1–2), 109–120, https://doi.org/10.1007/s00382-021-05697-w.

Fang, X.-H., F. Zheng, Z.-Y. Liu, and J. Zhu, 2019: Decadal modulation of ENSO spring persistence barrier by thermal damping processes in the observation. Geophys. Res. Lett., 46(12), 6892–6899, https://doi.org/10.1029/2019GL082921.

Hu, S. N., and A. V. Fedorov, 2018: Cross-equatorial winds control El Niño diversity and change. Nature Climate Change, 8(9), 798–802, https://doi.org/10.1038/s41558-018-0248-0.

Hu, Z.-Z., A. Kumar, Y. Xue, and B. Jha, 2014: Why were some La Niñas followed by another La Niña. Climate Dyn., 42(3–4), 1029–1042, https://doi.org/10.1007/s00382-013-1917-3.

Hu, Z.-Z., A. Kumar, J. S. Zhu, P. T. Peng, and B. H. Huang, 2019: On the challenge for ENSO cycle prediction: An example from NCEP Climate Forecast System version 2. J. Climate, 32(1), 183–194, https://doi.org/10.1175/JCLI-D-18-0285.1.

Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54(7), 811–829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

Kao, H. Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22(3), 615–632, https://doi.org/10.1175/2008JCLI2309.1.

Kumar, A. and Z.-Z. Hu, 2014: Interannual and interdecadal variability of ocean temperature along the equatorial Pacific in conjunction with ENSO. Climate Dyn., 42(5–6), 1243–1258, https://doi.org/10.1007/s00382-013-1721-0.

Latif, M., T. P. Barnett, M. A. Cane, M. Flügel, N. E. Graham, H. Von Storch, J. S. Xu, and S. E. Zebiak, 1994: A review of ENSO prediction studies. Climate Dyn., 9(4), 167–179, https://doi.org/10.1007/BF00208250.

Li, X. F., Z.-Z. Hu, Y.-H. Tseng, Y. Y. Liu, and P. Liang, 2022: A historical perspective of the La Niña Event in 2020/21. J. Geophys. Res., 127(7), e2021JD035546, https://doi.org/10.1029/2021JD035546.

McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in earth science. Science, 314(5806), 1740–1745, https://doi.org/10.1126/science.1132588.

Mu, M., W. S. Duan, and B. Wang, 2007: Season-dependent dynamics of nonlinear optimal error growth and El Niño-Southern Oscillation predictability in a theoretical model. J. Geophys. Res., 112, D10113, https://doi.org/10.1029/2005JD006981.

Timmermann, A., and Coauthors, 2018: El Niño-Southern oscillation complexity. Nature, 559(7715), 535–545, https://doi.org/10.1038/s41586-018-0252-6.

Tseng, Y.-H., Z.-Z. Hu, R.-Q. Ding, and H.-C. Chen, 2017: An ENSO prediction approach based on ocean conditions and ocean—atmosphere coupling. Climate Dyn., 48(5–6), 2025–2044, https://doi.org/10.1007/s00382-016-3188-2.

Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118(507), 877–926, https://doi.org/10.1002/qj.49711850705.

Wu, X., Y. M. Okumura, C. Deser, and P. N. Dinezio, 2021: Two-year dynamical predictions of ENSO event duration during 1954–2015. J. Climate, 34(10), 4069–4087, https://doi.org/10.1175/JCLI-D-20-0619.1.

Xie, S. P., Q. H. Peng, Y. Kamae, X. T. Zheng, H. Tokinaga, and D. X. Wang, 2018: Eastern pacific ITCZ dipole and ENSO diversity. J. Climate, 31(11), 4449–4462, https://doi.org/10.1175/JCLI-D-17-0905.1.

Zheng, F., and J. Zhu, 2010: Spring predictability barrier of ENSO events from the perspective of an ensemble prediction system. Global and Planetary Change, 72(3), 108–117, https://doi.org/10.1016/j.gloplacha.2010.01.021.

Zheng, F., L. S. Feng, and J. Zhu, 2015: An incursion of off-equatorial subsurface cold water and its role in triggering the “double dip” La Niña event of 2011. Adv. Atmos. Sci., 32(6), 731–742, https://doi.org/10.1007/s00376-014-4080-9.

Zheng, F., X. H. Fang, J. Zhu, J.-Y. Yu, and X. C. Li, 2016: Modulation of Bjerknes feedback on the decadal variations in ENSO predictability. Geophys. Res. Lett., 43(24), 12560–12568, https://doi.org/10.1002/2016GL071636.

Zhu, J. S., A. Kumar, B. H. Huang, M. A. Balmaseda, Z.-Z. Hu, L. Marx, and J. L. Kinter III, 2016: The role of off-equatorial surface temperature anomalies in the 2014 El Niño prediction. Scientific Reports, 6, 19677, https://doi.org/10.1038/srep19677.