Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones

Acta Materialia - Tập 108 - Trang 36-45 - 2016
Saad A. Khairallah1, Andrew T. Anderson2, Alexander Rubenchik2, Wayne E. King2
1Lawrence Livermore National Laboratory 7000 East Ave., Livermore, CA 94550, USA
2Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550, USA

Tài liệu tham khảo

Berman, 2012, 3-D printing: the new industrial revolution, Bus. Horizons, 55, 155, 10.1016/j.bushor.2011.11.003 Leu, 2009 Srivatsa, 2014 Anon, 2014, 3D printing and the new shape of industrial manufacturing, Del. PricewaterhouseCoopers LLP, 1 Schoinochoritis, 2014, 1 King, 2015, Laser powder bed fusion additive manufacturing of metals, Appl. Phys. Rev. 2, 2, 041304, 10.1063/1.4937809 Gusarov, 2005, Modelling of radiation transfer in metallic powders at laser treatment, Int. J. Heat Mass Transf., 48, 3423, 10.1016/j.ijheatmasstransfer.2005.01.044 Yuan, 2015, Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments, J. Phys. D. Appl. Phys., 48, 16, 10.1088/0022-3727/48/3/035303 Gutler, 2013, Simulation of laser beam melting of steel powders using the three-dimensional volume of fluid method, Phys. Proc., 41, 874 Attar, 2011, “Lattice Boltzman model for thermal free surface flows with liquid-solid phase transition, Int. J. Heat Fluid FLow, 32, 156, 10.1016/j.ijheatfluidflow.2010.09.006 Korner, 2011, Mesoscopic simulation of selective beam melting processes, J. Mater. Process. Technol., 211, 978, 10.1016/j.jmatprotec.2010.12.016 Korner, 2013, Fundamental consolidation mechanisms during selective beam melting of powders, Model. Simul. Mater. Sci. Eng., 18 Klassen, 2014, Modelling of electron beam absorption in complex geometries, J. Phys. D. Appl. Phys., 47, 11, 10.1088/0022-3727/47/6/065307 Ammer, 2015, Numerical investigation on hatching process strategies for powder-bed-based additive manufacturing using an electron beam, Int. J. Adv. Manuf. Thechnol., 78, 239, 10.1007/s00170-014-6594-9 Khairallah, 2014, Mesoscopic simulation model of selective laser melting of stainless steel powder, J. Mater. Process. Technol., 214, 2627, 10.1016/j.jmatprotec.2014.06.001 Gusarov, 2010, Modeling the interaction of laser radiation with powder bed at selective laser melting, Phys. Procedia, 5, 381, 10.1016/j.phpro.2010.08.065 Lee, 2015, Mesoscopic simulation of heat transfer and fluid flow in laser Powder bed additive manufacturing, 1154 Chunlei Qiu, 2015, On the role of melt flow into the surface structure and porosity development during selective laser melting, Acta Mater., 96, 72, 10.1016/j.actamat.2015.06.004 Thijs, 2010, A study of the microstructural evolution during selective laser melting of Ti-6Al-4V, Acta Mater., 58, 3303, 10.1016/j.actamat.2010.02.004 Kempen, 2013, Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder, Acta Mater., 61, 1809, 10.1016/j.actamat.2012.11.052 Adkins, 2013, Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V, Mater. Sci. Eng. A, 578, 230, 10.1016/j.msea.2013.04.099 Kawahito, 2015, Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium, J. Laser Appl., 27, 32012, 10.2351/1.4922383 Bertrand, 2013, Use of track/layer morphology to develop functional parts by selective laser melting, J. Laser Appl., 25, 5 Gusarov, 2010, Single track formation in selective laser melting of metal powders, J. Mater. Process. Technol., 210, 1624, 10.1016/j.jmatprotec.2010.05.010 McCallen, 2012 Anderson, 2015, Simulation of the main physical processes in remote laser penetration with large laser spot size, AIP Adv., 5, 47120, 10.1063/1.4918284 Zhaoyan, 2004, Theory of shock wave propagation during laser ablation, Phys. Rev. B, 69, 235403, 10.1103/PhysRevB.69.235403 Aden, 1990, “Laser-induced vaporization of metal as a Riemann problem, J. Phys. D. Appl. Phys., 23, 655, 10.1088/0022-3727/23/6/004 Anisimov, 1995 Semak, 1999, Transient model for the keyhole during laser welding, J. Phys. D. Appl. Phys., 32, 61, 10.1088/0022-3727/32/15/103 Semak, 1997, The role of recoil pressure in energy balance during laser materials processing, J. Phys. D. Appl. Phys., 30, 2541, 10.1088/0022-3727/30/18/008 Schopp, 2012, Temperature and emissivity determination of liquid steel S235, J. Phys. D. Appl. Phys., 45, 235203, 10.1088/0022-3727/45/23/235203 Rai, 2007, Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti–6Al–4V, 304L stainless steel and vanadium, J. Phys. D. Appl. Phys., 40, 5753, 10.1088/0022-3727/40/18/037 Levy, 2007, Consolidation phenomena in laser and powder-bed based layered manufacturing, CIRP Ann. - Manuf. Technol., 56 King, 2014, Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing, J. Mat. Proc. Tech., 214, 2915, 10.1016/j.jmatprotec.2014.06.005 Hann, 2011, A simple methodology for predicting laser- weld properties from material and laser parameters, J. Phys. D. Appl. Phys., 44, 445401, 10.1088/0022-3727/44/44/445401 Wang, 2015, 3D-imaging of selective laser melting defects in a Co–Cr–Mo alloy by synchrotron radiation micro-CT, Acta Mater., 98, 1, 10.1016/j.actamat.2015.07.014 Schwerdtfeger, 2012, In Situ flaw detection by IR-imaging during electron beam melting, Rapid Prototyp. J., 18, 259, 10.1108/13552541211231572