Existence of positive periodic solutions for neutral logarithmic population model with multiple delays
Tài liệu tham khảo
Deimling, 1985
R.E. Gaines, J.L. Mawhin, Lectures Notes in Mathematics, Vol. 568, Springer, Berlin, 1977.
Gopalsamy, 1991, On a periodic neutral logistic equation, Glasgow Math. J., 33, 281, 10.1017/S001708950000834X
Gopalsamy, 1988, On a neutral delay logistic equation, Dyn. Stability Systems, 2, 183, 10.1080/02681118808806037
Kuang, 1993
Kuang, 1991, Boundedness of solutions of a nonlinear nonautonomous neutral delay equation, J. Math. Anal. Appl., 156, 293, 10.1016/0022-247X(91)90398-J
Liu, 1997, Existence theorem for periodic solutions of higher order nonlinear differential equations, J. Math. Anal. Appl., 216, 481, 10.1006/jmaa.1997.5669
Petryshynand, 1982, Existence theorem for periodic solutions of higher order nonlinear periodic boundary value problems, Nonlinear Anal., 6, 943, 10.1016/0362-546X(82)90013-X
Pielou, 1977
Yang, 2003, Sufficient conditions for the existence of positive periodic solutions of a class of neutral delay models, Appl. Math. Comput., 142, 123, 10.1016/S0096-3003(02)00288-6