Using Microfluidic Set-Up to Determine the Adsorption Rate of Sporosarcina pasteurii Bacteria on Sandstone

Transport in Porous Media - Tập 132 - Trang 283-297 - 2020
Tom Marzin1, Brice Desvages2, Adama Creppy1, Louis Lépine2, Annette Esnault-Filet2, Harold Auradou1
1Université Paris-Saclay, CNRS, FAST, Orsay, France
2Soletanche-Bachy, Rueil-Malmaison, France

Tóm tắt

Microbial-induced carbonate precipitation (MICP) in porous media is a two-step procedure: First, the suspension of bacteria is injected and some of the bacteria get stuck on the grains. The second stage consists in the injection of a calcifying solution that triggers the calcite precipitation and creates a calcite shell around the bacteria. In the present article, we describe a novel method to measure the adhesion rate of Sporosarcina pasteurii bacteria on sandstone and that, additionally, allows to obtain information about local position of the calcite crystals on the sandstone grains. The method is based on the detection of the crystals developed on grains placed inside a microfluidic cell. The potential of the technique was evaluated and demonstrated by studying the influence of the injection time and ionic strength on the adhesion rate and on the spatial distribution of the crystals. The values of the adhesion rates are in good agreement with values determined using column experiments. We find, for example, an increase in the adhesion rate with the NaCl in solution, with a rate of the order of 0.005 min$$^{-1}$$ for a concentration of 3 g/L. with a maximum of 0.03 min$$^{-1}$$ for experiments realized with a salt concentration of 20 g/L. Our work shows it is possible to use small volumes of fluid to determine quantities accurately, such as adhesion rate or crystals spatial repartition, avoiding the waste of a large quantity of fluids. The method also opens the possibility to screen different fluid compositions and flow conditions to optimize the MICP process.

Tài liệu tham khảo

Auset, M., Keller, A.A.: Pore-scale visualization of colloid straining and filtration in saturated porous media using micromodels. Water Resour. Res. 42, W12S02 (2006). https://doi.org/10.1029/2005WR004639 Bai, Y., Guo, X., Li, Y., Huang, T.: Experimental and visual research on the microbial induced carbonate precipitation by Pseudomonas aeruginosa. AMB Express (2017). https://doi.org/10.1186/s13568-017-0358-5 Bolster, C.H., Mills, A.L., Hornberger, G.M., Herman, J.S.: Effect of surface coatings, grain size, and ionic strength on the maximum attainable coverage of bacteria on sand surfaces. J. Contam. Hydrol. 50, 287–305 (2001). https://doi.org/10.1016/S0169-7722(01)00106-1 Boschan, A., Auradou, H., Chertcoff, R., Ippolito, I., Hulin, J.P.: Miscible displacement fronts of shear thinning fluids inside rough fractures. Water Resour. Res. 43, W03438 (2007). https://doi.org/10.1029/2006WR005324 Bradford, S.A., Simunek, J., Walker, S.L.: Transport and straining of E. coli O157:H7 in saturated porous media. Water Resour. Res. (2006). https://doi.org/10.1029/2005WR004805 Choi, N.-C., Kim, D.-J., Kim, S.-B.: Quantification of bacterial mass recovery as a function of pore-water velocity and ionic strength. Res. Microbiol. 158, 70–78 (2007). https://doi.org/10.1016/j.resmic.2006.09.007 Dadda, A., Geindreau, C., Emeriault, F., et al.: Characterization of microstructural and physical properties changes in biocemented sand using 3D X-ray microtomograph. Acta Geotech. 12, 955 (2017). https://doi.org/10.1007/s11440-017-0578-5 De Muynck, W., De Belie, N., Verstraete, W.: Microbial carbonate precipitation in construction materials: a review. Ecol. Eng. 36, 118–136 (2010). https://doi.org/10.1016/j.ecoleng.2009.02.006. (Special Issue: BioGeoCivil Engineering) Fontes, D.E., Mills, A.L., Hornberger, G.M., Herman, J.S.: Physical and chemical factors influencing transport of microorganisms through porous media. Appl. Environ. Microbiol. 57, 2473–2481 (1991) Guckenberger, D.J., de Groot, T.E., Wan, A.M.D., Beebe, D.J., Young, E.W.K.: Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15(11), 2364–2378 (2015). https://doi.org/10.1039/C5LC00234F Handley-Sidhu, S., Sham, E., Cuthbert, M.O., Nougarol, S., Mantle, M., Johns, M.L., Macaskie, L.E., Renshaw, J.C.: Kinetics of urease mediated calcite precipitation and permeability reduction of porous media evidenced by magnetic resonance imaging. Int. J. Environ. Sci. Technol. 10, 881–890 (2013). https://doi.org/10.1007/s13762-013-0241-0 Harkes, M.P., van Paassen, L.A., Booster, J.L., Whiffin, V.S., van Loosdrecht, M.C.M.: Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecol. Eng. 36, 112–117 (2010) Harvey, R.W., Garabedian, S.P.: Use of colloid filtration theory in modeling movement of bacteria through a contaminated sandy aquifer. Environ. Sci. Technol. 25, 178–185 (1991) Hornberg, G.M., Mills, A.L., Herman, J.S.: Bacterial transport in porous media evaluation of a model using laboratory observation. Water Resour. Res. 28, 915–938 (1992) Jacobs, A., Lafolie, F., Herry, J.M., Debroux, M.: Kinetic adhesion of bacterial cells to sand: cell surface properties and adhesion rate. Colloids Surf. B Biointerfaces 59, 35–45 (2007) Jewett, D.G., Hilbert, T.A., Logan, B.E., Arnold, R.G., Bales, R.C.: Bacterial transport in laboratory columns and filters: influence of ionic strength and pH on collision efficiency. Water Res. 29, 1673–1680 (1995). https://doi.org/10.1016/0043-1354(94)00338-8 Keykha, H.A., Huat, B.B.K., Asadi, A., Mohsen, Z., Satoru, K.: Electrokinetic properties of pasteurii and aquimarina bacteria. Environ. Geotech. 2(3), 181–188 (2015). https://doi.org/10.1680/envgeo.13.00072 Lauchnor, E.G., Topp, D.M., Parker, A.E., Gerlach, R.: Whole cell kinetics of ureolysis by Sporosarcina pasteurii. J. Appl. Microbiol. 118(6), 1321–32 (2015). https://doi.org/10.1111/jam.12804 Lépine, L., Sapin, L., Gutjahr, I., Esnault-Filet, A. personal communication (2019) Li, Q., Logan, B.E.: Enhancing bacterial transport for bioaugmentation of aquifers using low ionic strength solutions and surfactants. Water Res. 33, 1090–1100 (1999). https://doi.org/10.1016/S0043-1354(98)00291-7 Liu, Y., Wang, J.-C., Ren, L., Tu, Q., Liu, W.-M., Wang, X.-Q., Liu, R., Zhang, Y.-R., Wang, J.-Y.: Microfluidics-based assay on the effects of microenvironmental geometry and aqueous flow on bacterial adhesion behaviors. J. Pharm. Sci. 1(3), 175–183 (2011). https://doi.org/10.1016/j.jpha.2011.06.001 Logan, B.E., Hilbert, T.A., Arnold, R.G.: Removal of bacteria in laboratory filters: models and experiments. Water Res. 27(6), 955–962 (1993) Nadell, C., Drescher, K., Foster, K.: Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016). https://doi.org/10.1038/nrmicro.2016.84 Redman, J.A., Walker, S.L., Elimelech, M.: Bacterial adhesion and transport in porous media: role of the secondary energy minimum. Environ. Sci. Technol. 38, 1777–1785 (2004). https://doi.org/10.1021/es034887l Rodriguez-Navarro, C., Rodriguez-Gallego, M., Ben Chekroun, K., Teresa Gonzalez-Muñoz, M.: Conservation of ornamental stone by Myxococcus xanthus induced carbonate biomineralization. Appl. Environ. Microbiol. 69, 2182–93 (2003). https://doi.org/10.1128/AEM.69.4.2182-2193.2003 Schijven, J.F., Medema, G., Vogelaar, A.J., Hassanizadeh, S.M.: Removal of microorganisms by deep well injection. J. Contam. Hydrol. 44, 301–327 (2000) Shehata, A.M., Nasr-El-Din, H.A.: Zeta: potential measurements: impact of salinity on sandstone minerals. In: SPE International Symposium on Oilfield Chemistry (2015). https://doi.org/10.2118/173763 Tobler, D., Cuthbert, M., Phoenix, V.: Transport of Sporosarcina pasteurii in sandstone and its significance for subsurface engineering technologies. Appl. Geochem. (2014). https://doi.org/10.1016/j.apgeochem.2014.01.004 Tufenkji, N., Elimelech, M.: Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ. Sci. Technol. 38, 529–536 (2004). https://doi.org/10.1021/es034049r Yutaka, Y., Jen, N., Stocker, R., Rusconi, R.: Microfluidic studies of biofilm formation in dynamic environments. J. Bacteriol. 198(19), 2589–2595 (2016). https://doi.org/10.1128/JB.00118-16