Erythrocytes as model cells for biocompatibility assessment, cytotoxicity screening of xenobiotics and drug delivery
Tài liệu tham khảo
Dzierzak, 2013, Erythropoiesis: development and differentiation, Cold Spring Harb. Perspect. Med., 3, a011601, 10.1101/cshperspect.a011601
Pagano, 2015, The use of erythrocyte fragility to assess xenobiotic cytotoxicity, Cell Biochem. Funct., 33, 351, 10.1002/cbf.3135
Silva-Herdade, 2016, Erythrocyte deformability — a partner of the inflammatory response, Microvasc. Res., 107, 34, 10.1016/j.mvr.2016.04.011
de Oliveira, 2010, An overview about erythrocyte membrane, Clin. Hemorheol. Microcirc., 44, 63, 10.3233/CH-2010-1253
Spychalska, 2012, Red blood cell membranopathies — pathogenesis, clinical presentation and diagnosis, Hematologia, 3, 81
Pasini, 2006, In-depth analysis of the membrane and cytosolic proteome of red blood cells, Blood, 108, 791, 10.1182/blood-2005-11-007799
Kuhn, 2017, Red blood cell function and dysfunction: redox regulation, nitric oxide metabolism, anemia, Antioxidants Redox Signal., 26, 10.1089/ars.2016.6954
D'Alessandro, 2019, Protect, repair, destroy or sacrifice: a role of oxidative stress biology in inter-donor variability of blood storage?, Blood Transfus., 17, 281
Cortese-Krott, 2014, Endothelial nitric oxide synthase in red blood cells: key to a new erythrocrine function?, Redox Biol., 2, 251, 10.1016/j.redox.2013.12.027
Pretorius, 2016, Erythrocytes and their role as health indicator: using structure in a patient-orientated precision medicine approach, Blood Rev. xxx, 10.1016/j.blre.2016.01.001
Pretorius, 2014, Diagnostic morphology: biophysical indicators for iron-driven inflammatory diseases, Integr. Biol., 6, 486, 10.1039/C4IB00025K
Lupescu, 2015, Enhanced suicidal erythrocyte death contributing to anemia in the elderly, Cell. Physiol. Biochem., 36, 773, 10.1159/000430137
Cranston, 1984, Plasmodium falciparum maturation abolishes physiologic red cell deformability, Science, 223, 400, 10.1126/science.6362007
Farag, 2018, Erythrocytes as a biological model for screening of xenobiotics toxicity, Chem. Biol. Interact., 279, 73, 10.1016/j.cbi.2017.11.007
Markowicz-Piasecka, 2018, Biocompatible sulfenamide and sulfonamide derivatives of metformin can exert beneficial effects on plasma haemostasis, Chem. Biol. Interact., 280, 15, 10.1016/j.cbi.2017.12.005
Shiva, 2007, In vitro models of oxidative stress in rat erythrocytes: effect of antioxidant supplements, Toxicol. Vitro, 21, 1355, 10.1016/j.tiv.2007.06.010
Weber, 2018, Blood-contacting biomaterials: in vitro evaluation of the hemocompatibility, Front. Bioeng. Biotechnol., 6, 99, 10.3389/fbioe.2018.00099
Liu, 2014, Blood compatible materials: state of the art, J. Mater. Chem. B, 2, 5718, 10.1039/C4TB00881B
Sinn, 2011, A novel in vitro model for preclinical testing of the hemocompatibility of intravascular stents according to ISO 10993-4, J. Mater. Sci. Mater. Med., 22, 1521, 10.1007/s10856-011-4335-2
Homann, 2016, Improved ex vivo blood compatibility of central venous catheter with noble metal alloy coating, J. Biomed. Mater. Res. B Appl. Biomater., 104, 1359, 10.1002/jbm.b.33403
Mazzaglia, 2018, Supramolecular adducts of anionic porphyrins and a biocompatible polyamine: effect of photodamage-on human red blood cells, J. Nanosci. Nanotechnol., 18, 7269, 10.1166/jnn.2018.15747
Bonaccorsi, 2013, Sulfenic acid-derived glycoconjugated disulfides and sulfoxides: a biological evaluation on human red blood cells, J. Sulfur Chem., 34, 684, 10.1080/17415993.2013.778259
Saini, 2016, Evaluation of the hemocompatibility and rapid hemostasis of (RADA)4 peptide-based hydrogels, Acta Biomater., 31, 71, 10.1016/j.actbio.2015.11.059
Farooqa, 2017, Synthesis, characterization and modification of Gum Arabic microgels for hemocompatibility and antimicrobial studies, Carbohydr. Polym., 156, 380, 10.1016/j.carbpol.2016.09.052
Sanak, 2010, Assessment of hemocompatibility of materials with arterial blood flow by platelet functional tests, Bulletin of the Polish academy of sciences, Techn. Sci., 58, 317
Seyfert, 2002, In vitro hemocompatibility testing of biomaterials according to the ISO 10993-4, Biomol. Eng., 19, 91, 10.1016/S1389-0344(02)00015-1
Van Oeveren, 2012, Comparison of modified chandler, roller pump, and ball valve circulation models for in vitro testing in high blood flow conditions: application in thrombogenicity testing of different materials for vascular applications, Int. J. Biomater., 10.1155/2012/673163
Biro, 2003, Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner, J. Thromb. Haemostasis, 1, 2561, 10.1046/j.1538-7836.2003.00456.x
Markowicz-Piasecka, 2015, Stability of erythrocyte membrane and overall hemostasis potential - a biocompatibility study of mebrofenin and other iminodiacetic acid derivatives, Pharmacol. Rep., 67, 1230, 10.1016/j.pharep.2015.05.021
Totea, 2014, In vitro hemocompatibility and corrosion behavior of new Zr-binary alloys in whole human blood, Open Chem., 12, 796, 10.2478/s11532-014-0535-1
Fischer, 2003, In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis, Biomaterials, 24, 1121, 10.1016/S0142-9612(02)00445-3
Li, 2012, Biocompatibility and toxicity of nanoparticles and nanotubes, J. Nanomater.
Rejinold, 2011, Curcumin-loaded biocompatible thermoresponsive polymeric nanoparticles for cancer drug delivery, J. Colloid Interface Sci., 360, 39, 10.1016/j.jcis.2011.04.006
He, 2010, An anti-ROS/hepatic fibrosis drug delivery system based on salvianolic acid B loaded mesoporous silica nanoparticles, Biomaterials, 31, 7785, 10.1016/j.biomaterials.2010.07.008
Szymonowicz, 2015, Haemocompatibility and cytotoxic studies of non-metallic composite materials modified with magnetic nano and microparticles, Acta Bioeng. Biomech., 17, 49
Pasricha, 2014, The red cell membrane, part 1: the role of the red cell membrane, Clin. Adv. Hematol. Oncol., 12, 533
Aoki, 2017, A comprehensive review of our current understanding of red blood cell (RBC) glycoproteins, Membranes (Basel), 7, 56, 10.3390/membranes7040056
Czogalla, 2007, Structural insight into an ankyrin-sensitive lipid-binding site of erythroid β-spectrin, Mol. Membr. Biol., 24, 215, 10.1080/09687860601102427
Wong, 1999, A basis of echinocytosis and stomatocytosis in the disc-sphere transformations of the erythrocyte, J. Theor. Biol., 196, 343, 10.1006/jtbi.1998.0845
Y. Kim, K. Kim, Y.K. Park, Measurement techniques for red blood cell deformability: Recent Adv., doi:10.5772/50698.
Stasiuk, 2009, Zmiany kształtu erytrocytów i czynniki je wywołujące, Postepy Biochem., 55, 425
Suwalsky, 2013, Acetylsalicylic acid (aspirin) and salicylic acid interaction with the human erythrocyte membrane bilayer induce in vitro changes in the morphology of erythrocytes, Arch. Biochem. Biophys., 539, 9, 10.1016/j.abb.2013.09.006
Mesquita, 2006, Defocusing microscopy: an approach for red blood cell optics, Appl. Phys. Lett., 88, 10.1063/1.2189010
Swanepoel, 2012, Scanning electron microscopy analysis of erythrocytes in thromboembolic ischemic stroke, Int. J. Lab. Hematol., 34, 185, 10.1111/j.1751-553X.2011.01379.x
Smith, 2015, Aspirin in the 21st century—common mechanisms of disease and their modulation by aspirin: a report from the 2015 scientific conference of the international aspirin foundation, 28 August, London, UK, E Canc. Med. Sci., 9, 581
Watala, 1993, Effect of aspirin on conformation and dynamics of membrane proteins in platelets and erythrocytes, Biochem. Pharmacol., 45, 1343, 10.1016/0006-2952(93)90288-8
Li, 1999, Effects of salicylic acid derivatives on red blood cell membranes, Pharmacol. Toxicol., 85, 206, 10.1111/j.1600-0773.1999.tb02010.x
Frydman, 2010, Acetylsalicylic acid and morphology of red blood cells, Braz. Arch. Biol. Technol., 53, 575, 10.1590/S1516-89132010000300010
Ahyayauch, 2003, pH dependent effects of chlorpromazine on liposomes and erythrocyte membrane, J. Lipid Res., 13, 147
Ahyayauch, 2004, Interaction of electrically neutral and cationic forms, Int. J. Pharm., 279, 51, 10.1016/j.ijpharm.2004.04.009
Ahyayauch, 2006, Changes in erythrocyte morphology induced by imipramine and chlorpromazine, J. Physiol. Biochem., 62, 199, 10.1007/BF03168469
Suwalsky, 2006, Effects of the antiepileptic drug carbamazepine on human erythrocytes, Toxicol. Vitro, 20, 1363, 10.1016/j.tiv.2006.05.010
Ficarra, 2013, Antiepileptic carbamazepine drug treatment induces alteration of membrane in red blood cells: possible positive effects on metabolism and oxidative stress, Biochimie, 95, 833, 10.1016/j.biochi.2012.11.018
Garcia, 1997, Localization of flunitrazepam in artificial membranes. A spectrophotometric study about the effect the polarity of the medium exerts on flunitrazepam acid–base equilibrium, Biochim. Biophys. Acta, 1324, 76, 10.1016/S0005-2736(96)00210-6
Garcia, 2000, Flunitrazepam partitioning into natural membranes increases surface curvature and alters cellular morphology, Chem. Biol. Interact., 129, 263, 10.1016/S0009-2797(00)00254-4
Reinhart, 2014, Interaction of injectable neurotropic drugs with the red cell membrane, Toxicol. Vitro, 28, 1274, 10.1016/j.tiv.2014.06.008
Suwalsky, 2015, Morphological effects induced in vitro by propranolol on human erythrocytes, J. Membr. Biol., 248, 683, 10.1007/s00232-015-9780-2
Bonarska-Kujawa, 2015, Molecular mechanism of action of chlorogenic acid on erythrocyte and lipid membranes, Mol. Membr. Biol., 32, 46, 10.3109/09687688.2015.1031833
Suwalsky, 2015, In vitro protective effects of resveratrol against oxidative damage in human erythrocytes, Biochim. Biophys. Acta, 1848, 76, 10.1016/j.bbamem.2014.09.009
Suwalsky, 2007, Effects of lithium on the human erythrocyte membrane and molecular models, Biophys. Chem., 129, 36, 10.1016/j.bpc.2007.05.003
Suwalsky, 2005, Iron affects the structure of cell membrane molecular models, Chem. Phys. Lipids, 134, 69, 10.1016/j.chemphyslip.2004.12.004
Suwalsky, 2013, Effects of sodium metavanadate on in vitro neuroblastoma and red blood cells, Arch. Biochem. Biophys., 535, 248, 10.1016/j.abb.2013.04.006
Suwalsky, 2004, The antiepileptic drug diphenylhydantoin affects the structure of the human erythrocyte membrane, Zeitschrift fur Naturforschung C, 59, 427, 10.1515/znc-2004-5-625
Reinhart, 1990, The effect of amiodarone on the erythrocyte shape and membrane properties, Clin. Sci., 79, 387, 10.1042/cs0790387
Reinhart, 1993, Binding of cyclosporine by erythrocytes: influence on cell shape and deformability, Eur. J. Clin. Invest., 23, 177, 10.1111/j.1365-2362.1993.tb00758.x
Suwalsky, 1999, The anticancer drug chlorambucil interacts with the human erythrocyte membrane and model phospholipid bilayers, Z. Naturforsch. C Biosci., 54, 1089, 10.1515/znc-1999-1214
Mark, 2001, Commercial taxane formulations induce stomatocytosis and increase blood viscosity, Br. J. Pharmacol., 134, 1207, 10.1038/sj.bjp.0704387
Baerlocher, 1997, The antineoplastic drug 5- fluorouracil produces echinocytosis and affects blood rheology, Br. J. Haematol., 99, 426, 10.1046/j.1365-2141.1997.4003212.x
Reinhart, 2003, Influence of propofol on erythrocyte morphology, blood viscosity and platelet function, Clin. Hemorheol. Microcirc., 29, 33
Reinhart, 2005, Influence of contrast media (iopromide, ioxaglate, gadolinium-DOTA) on blood viscosity, erythrocyte morphology and platelet function, Clin. Hemorheol. Microcirc., 32, 227
Manrique-Moreno, 2010, Effects of the nonsteroidal anti-inflammatory drug naproxen on human erythrocytes and on cell membrane molecular models, Biophys. Chem., 147, 53, 10.1016/j.bpc.2009.12.010
Suwalsky, 2015, An in vitro study on the antioxidant capacity of usnic acid on human erythrocytes and molecular models of its membrane, Biochim. Biophys. Acta, 1848, 2829, 10.1016/j.bbamem.2015.08.017
Zambrano, 2019, The acetylcholinesterase (AChE) inhibitor and anti-Alzheimer drug donepezil interacts with human erythrocytes, BBA - Biomembr., 1861, 1078, 10.1016/j.bbamem.2019.03.014
Suwalsky, 2011, Effects of phenylpropanolamine (PPA) on in vitro human erythrocyte membranes and molecular models, Biochem. Biophys. Res. Commun., 406, 320, 10.1016/j.bbrc.2011.01.117
Zambrano, 2017, In vitro effects of the anti-Alzheimer drug memantine on the human erythrocyte membrane and molecular models, Biochem. Biophys. Res. Commun., 483, 528, 10.1016/j.bbrc.2016.12.111
Petit, 2019, In vitro effects of the antitumor drug miltefosine on human erythrocytes and molecular models of its membrane, BBA - Biomembr., 1861, 17, 10.1016/j.bbamem.2018.10.009
Suwalsky, 2015, Interactions of the antiviral and antiparkinson agent amantadine with lipid membranes and human erythrocytes, Biophys. Chem., 202, 13, 10.1016/j.bpc.2015.04.002
Zambrano, 2018, α1-and β-adrenergic antagonist labetalol induces morphological changes in human erythrocytes, Biochem. Biophys. Res. Commun., 503, 209, 10.1016/j.bbrc.2018.06.004
Suwalsky, 2009, Structural effects in vitro of the anti-inflammatory drug diclofenac on human erythrocytes and molecular models of cell membranes, Biophys. Chem., 141, 34, 10.1016/j.bpc.2008.12.010
Mesdaghinia, 2019, An in vitro method to evaluate hemolysis of human red blood cells (RBCs) treated by airborne particulate matter (PM10), MethodsX, 6, 156, 10.1016/j.mex.2019.01.001
Nkrumah, 2011, Hemoglobin estimation by the HemoCue® portable hemoglobin photometer in a resource poor setting, BMC Clin. Pathol., 11
Orhan, 2001, In vitro effects of NSAIDS and paracetamol on oxidative stress-related parameters of human erythrocytes, Exp. Toxicol. Pathol., 53, 133, 10.1078/0940-2993-00179
Górnicki, 2006, Influence of the retinoid acitretin on erythrocyte microrheology in vitro, Int. J. Clin. Pharm. Ther., 44, 648, 10.5414/CPP44648
Crupia, 2019, Susceptibility of erythrocytes from different sources to xenobiotics-induced lysis, Comp. Biochem. Physiol., C, 221, 68
Boehm, 2014, Simply red: a novel spectrophotometric erythroid proliferation assay as a tool for erythropoiesis and erythrotoxicity studies, Biotechnol. Rep., 4, 34, 10.1016/j.btre.2014.07.005
Scala, 2015, A new erythrocyte-based biochemical approach to predict the antiproliferative effects of heterocyclic scaffolds: the case of indolone, Biochim. Biophys. Acta, 1850, 73, 10.1016/j.bbagen.2014.09.022
Briglia, 2017, Eryptosis: ally or enemy, Curr. Med. Chem., 24, 937, 10.2174/0929867324666161118142425
Briglia, 2015, Fucoxanthin induced suicidal death of human erythrocytes, Cell. Physiol. Biochem., 37, 2464, 10.1159/000438599
Pretorius, 2016, A comprehensive review on eryptosis, Cell. Physiol. Biochem., 39, 1977, 10.1159/000447895
Qadri, 2017, Eryptosis in health and disease: a paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes, Blood Rev., 31, 349, 10.1016/j.blre.2017.06.001
Pyrshev, 2018, Apoptosis and eryptosis: striking differences on biomembrane level, Biochim. Biophys. Acta Biomembr., 1860, 1362, 10.1016/j.bbamem.2018.03.019
Mahmud, 2009, Arsenic-induced suicidal erythrocyte death, Arch. Toxicol., 83, 107, 10.1007/s00204-008-0338-2
Bissinger, 2019, Oxidative stress, eryptosis and anemia: a pivotalmechanistic nexus in systemic diseases, FEBS J., 286, 826, 10.1111/febs.14606
Lang, 2015, Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death, Semin. Cell Dev. Biol., 39, 35, 10.1016/j.semcdb.2015.01.009
Mandal, 2012, S-allyl cysteine in combination with clotrimazole downregulates Fas induced apoptotic events in erythrocytes of mice exposed to lead, Biochim. Biophys. Acta, 1820, 9, 10.1016/j.bbagen.2011.09.019
Lang, 2005, PGE(2) in the regulation of programmed erythrocyte death, Cell Death Differ., 12, 415, 10.1038/sj.cdd.4401561
Abed, 2012, Sphingomyelinase-induced adhesion of eryptotic erythrocytes to endothelial cells, Am. J. Physiol. Cell Physiol., 303, C991, 10.1152/ajpcell.00239.2012
Calabro, 2015, Enhanced eryptosis following juglone exposure, Basic Clin. Pharmacol. Toxicol., 116, 460, 10.1111/bcpt.12340
Seshadri, 2011, Plumbagin and juglone induce caspase-3-dependent apoptosis involving the mitochondria through ROS generation in human peripheral blood lymphocytes, Free Radic. Biol. Med., 51, 2090, 10.1016/j.freeradbiomed.2011.09.009
Lang, 2012, Killing me softly - suicidal erythrocyte death, Int. J. Biochem. Cell Biol., 44, 1236, 10.1016/j.biocel.2012.04.019
Attanasio, 2015, Enhanced suicidal erythrocyte death in acute cardiac failure, Eur. J. Clin. Invest., 45, 1316, 10.1111/eci.12555
Bester, 2013, High ferritin levels have major effects on the morphology of erythrocytes in Alzheimer's disease, Front. Aging Neurosci., 5, 88, 10.3389/fnagi.2013.00088
Briglia, 2015, Triggering of suicidal erythrocyte death by zosuquidar, Cell. Physiol. Biochem., 37, 2355, 10.1159/000438589
Fazio, 2015, Oxaliplatin induced suicidal death of human erythrocytes, Cell. Physiol. Biochem., 37, 2393, 10.1159/000438592
Lang, 2013, Effect of thioridazine on erythrocytes, Toxins, 5, 1918, 10.3390/toxins5101918
Signoretto, 2016, Nocodazole induced suicidal death of human erythrocytes, Cell. Physiol. Biochem., 38, 379, 10.1159/000438638
Calabro, 2015, Triggering of suicidal erythrocyte death following boswellic acid exposure, Cell. Physiol. Biochem., 37, 131, 10.1159/000430339
Fazio, 2015, Stimulation of suicidal erythrocyte death by garcinol, Cell. Physiol. Biochem., 37, 805, 10.1159/000430397
Lupescu, 2012, Hexavalent chromium-induced erythrocyte membrane phospholipid asymmetry, Biometals, 25, 309, 10.1007/s10534-011-9507-5
Shaik, 2012, Sunitinib-sensitive suicidal erythrocyte death, Cell. Physiol. Biochem., 30, 512, 10.1159/000341434
Abed, 2012, Stimulation of suicidal death of erythrocytes by rifampicin, Toxicology, 302, 123, 10.1016/j.tox.2012.10.006
Abed, 2013, Tannic Acid induced suicidal erythrocyte death, Cell. Physiol. Biochem., 32, 1106, 10.1159/000354510
Zelenak, 2012, Tanshinone IIA stimulates erythrocyte phosphatidylserine exposure, Cell. Physiol. Biochem., 30, 282, 10.1159/000339064
Jilani, 2011, Triggering of erythrocyte cell membrane scrambling by ursolic acid, J. Nat. Prod., 74, 2181, 10.1021/np2005133
Bissinger, 2014, Effect of saponin on erythrocytes, Int. J. Hematol., 100, 51, 10.1007/s12185-014-1605-z
Zbidah, 2012, Apigenin-induced suicidal erythrocyte death, J. Agric. Food Chem., 60, 533, 10.1021/jf204107f
Lang, 2015, Ceramide in the regulation of eryptosis, the suicidal erythrocyte death, Apoptosis, 20, 758, 10.1007/s10495-015-1094-4
Jilani, 2013, Fluoxetine induced suicidal erythrocyte death, Toxins (Basel), 5, 1230, 10.3390/toxins5071230
Lang, 2012, Mechanisms and significance of eryptosis, the suicidal death of erythrocytes, Blood Purif., 33, 125, 10.1159/000334163
Boulet, 2018, Manipulating eryptosis of human red blood cells: a novel antimalarial strategy?, Front. Cell Infect. Microbiol., 8, 419, 10.3389/fcimb.2018.00419
Markowicz-Piasecka, 2017, New prodrugs of metformin do not influence the overall haemostasis potential and integrity of the erythrocyte membrane, Eur. J. Pharmacol., 811, 208, 10.1016/j.ejphar.2017.06.011
Officioso, 2016, Bromfenvinphos induced suicidal death of human erythrocytes, Pestic. Biochem. Physiol., 126, 58, 10.1016/j.pestbp.2015.07.007
Nicolay, 2007, Stimulation of erythrocyte cell membrane scrambling by amiodarone, Cell. Physiol. Biochem., 20, 1043, 10.1159/000110713
Föller, 2008, Stimulation of suicidal erythrocyte death by amantadine, Eur. J. Pharmacol., 581, 13, 10.1016/j.ejphar.2007.11.051
Mahmud, 2009, Triggering of suicidal erythrocyte death by amphotericin B, Cell. Physiol. Biochem., 24, 263, 10.1159/000233251
Bobbala, 2009, Azathioprine favourably influences the course of malaria, Malar. J., 8, 102, 10.1186/1475-2875-8-102
Lupescu, 2013, Triggering of suicidal erythrocyte death by celecoxib, Toxins (Basel), 5, 1543, 10.3390/toxins5091543
Koka, 2008, Influence of chlorpromazine on eryptosis, parasitemia and survival of plasmodium berghei infected mice, Cell. Physiol. Biochem., 22, 261, 10.1159/000149804
Mahmud, 2008, Suicidal erythrocyte death triggered by cisplatin, Toxicology, 249, 40, 10.1016/j.tox.2008.04.003
Niemoeller, 2006, Induction of eryptosis by cyclosporine, Naunyn-Schmiedeberg’s Arch. Pharmacol., 374, 41, 10.1007/s00210-006-0099-5
Nicolay, 2010, Lithium-induced suicidal erythrocyte death, J. Psychopharmacol., 24, 1533, 10.1177/0269881109102631
Bissinger, 2015, Stimulation of suicidal erythrocyte death by the antimalarial drug mefloquine, Cell. Physiol. Biochem., 36, 1395, 10.1159/000430305
Qadri, 2009, Stimulation of ceramide formation and suicidal erythrocyte death by vitamin K(3) (menadione), Eur. J. Pharmacol., 623, 10, 10.1016/j.ejphar.2009.09.011
Mahmud, 2008, Stimulation of erythrocyte cell membrane scrambling by methyldopa, Kidney Blood Press. Res., 31, 299, 10.1159/000153250
Bissinger, 2015, Induction of suicidal erythrocyte death by nelfinavir, Toxins (Basel), 7, 1616, 10.3390/toxins7051616
Lupescu, 2014, Induction of suicidal erythrocyte death by novobiocin, Cell. Physiol. Biochem., 33, 670, 10.1159/000358643
Malik, 2015, Stimulation of erythrocyte cell membrane scrambling by nystatin, Basic Clin. Pharmacol. Toxicol., 116, 47, 10.1111/bcpt.12279
Lang, 2006, Stimulation of erythrocyte phosphatidylserine exposure by paclitaxel, Cell. Physiol. Biochem., 18, 151, 10.1159/000095190
Niemoeller, 2008, Retinoic acid induced suicidal erythrocyte death, Cell. Physiol. Biochem., 21, 193, 10.1159/000113761
Oswald, 2014, Stimulation of suicidal erythrocyte death by ribavirin, Basic Clin. Pharmacol. Toxicol., 114, 311, 10.1111/bcpt.12165
Waibel1, 2016, Ritonavir-induced suicidal death of human erythrocytes, Basic Clin. Pharmacol. Toxicol., 119, 51, 10.1111/bcpt.12547
Briglia, 2015, Triggering of suicidal erythrocyte death by ruxolitinib, Cell. Physiol. Biochem., 37, 768, 10.1159/000430394
Bissinger, 2015, Triggering of suicidal erythrocyte death by topotecan, Cell. Physiol. Biochem., 37, 1607, 10.1159/000438527
Schneider, 2007, Suicidal erythrocyte death following cellular K+ loss, Cell. Physiol. Biochem., 20, 35, 10.1159/000104151
Repsold, 2018, Eryptosis: an erythrocyte's suicidal type of cell death, BioMed Res. Int., 5, 1, 10.1155/2018/9405617
Lang, 2010, Ceramide in suicidal death of erythrocytes, Cell. Physiol. Biochem., 26, 21, 10.1159/000315102
Kasinathan, 2007, Inhibition of eryptosis and intraerythrocytic growth of Plasmodium falciparum by flufenamic acid, N. Schmied. Arch. Pharmacol., 374, 255, 10.1007/s00210-006-0122-x
Kucherenko, 2008, Inhibition of cation channels and suicidal death of human erythrocytes by zidovudine, Toxicology, 253, 62, 10.1016/j.tox.2008.08.012
Kucherenko, 2012, Inhibitory effect of furosemide on non-selective voltage-independent cation channels in human erythrocytes, Cell. Physiol. Biochem., 30, 863, 10.1159/000341464
Cimen, 2008, Free radical metabolism in human erythrocytes, Clin. Chim. Acta, 390, 1, 10.1016/j.cca.2007.12.025
Scott, 1989, Enhancement of erythrocyte superoxide dismutase activity: effects on cellular oxidant defense, Blood, 74, 2542, 10.1182/blood.V74.7.2542.2542
Wolff, 1994, Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides, Methods Enzymol., 233, 182, 10.1016/S0076-6879(94)33021-2
Biswas, 2008, Mechanism of erythrocyte death in human population exposed to arsenic through drinking water, Toxicol. Appl. Pharmacol., 230, 57, 10.1016/j.taap.2008.02.003
Zhao, 2005, Detection and characterization of the product of hydroethidium and intracellular superoxide by HPLC and limitations of fluores-cence, Proc. Natl. Acad. Sci. U. S. A., 102, 5727, 10.1073/pnas.0501719102
Qian, 2009, The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris, Aquat. Toxicol., 92, 250, 10.1016/j.aquatox.2009.02.008
Ohkawa, 1979, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem., 95, 351, 10.1016/0003-2697(79)90738-3
Yagi, 1984, Assay for blood plasma or serum, Methods Enzymol., 105, 328, 10.1016/S0076-6879(84)05042-4
Bartosz, 2004
Uchida, 1993, Covalent attachment of 4-hydroxynonenal to glyceraldehyde- 3-phosphate dehydrogenase, J. Biol. Chem., 268, 6388, 10.1016/S0021-9258(18)53264-6
Biswas, 2010, Reduced cellular redox status induces 4-hydroxynonenal- mediated caspase 3 activation leading to erythrocyte death during chronic arsenic exposure in rats, Toxicol. Appl. Pharmacol., 244, 315, 10.1016/j.taap.2010.01.009
Tietze, 1969, Enzymatic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues, Anal. Biochem., 27, 502, 10.1016/0003-2697(69)90064-5
Paglia, 1967, Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase, Lab. Clin. Med., 70, 158
Habig, 1974, The first enzymatic step in mercapturic acid formation, J. Biol. Chem., 249, 7130, 10.1016/S0021-9258(19)42083-8
Mannervik, 2001, Measurement of glutathione reductase activity, Curr. Protoc. Toxicol., 7, 7.2.1
Spitz, 1989, An assay for superoxide dismutase activity in mammalian tissue homogenates, Anal. Biochem., 179, 8, 10.1016/0003-2697(89)90192-9
Aebi, 1984, Catalase in vitro, Methods Enzymol., 105, 121, 10.1016/S0076-6879(84)05016-3
Okamoto, 2004, Verapamil prevents impairment in filterability of human erythrocytes exposed to oxidative stress, Jpn. J. Physiol., 54, 39, 10.2170/jjphysiol.54.39
Mohanty, 2014, Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging, Front. Physiol., 5, 84, 10.3389/fphys.2014.00084
Panghal, 2020, Gallic acid and MiADMSA reversed arsenic induced oxidative/nitrosative damage in rat red blood cells, Heliyon, 6, 10.1016/j.heliyon.2020.e03431
Tayeb, 2011, Subacute effects of 2,4-dichlorophenoxyacetic herbicide on antioxidant defensesystem and lipid peroxidation in rat erythrocytes, Pestic. Biochem. Physiol., 99, 256, 10.1016/j.pestbp.2011.01.004
Sicinska, 2020, Human erythrocytes exposed to phthalates and their metabolites alter antioxidant enzyme activity and hemoglobin oxidation, Int. J. Mol. Sci., 21, 4480, 10.3390/ijms21124480
Meléndez-Martínez, 2017, Rattlesnake Crotalus molossus nigrescens venom induces oxidative stress on human erythrocytes, Toxins Trop. Dis., 23, 24
Qasim, 2015, Diminution of oxidative damage to human erythrocytes and lymphocytes by creatine: possible role of creatine in blood, PLoS One, 10, 10.1371/journal.pone.0141975
Nagababu, 2013, Role of peroxiredoxin-2 in protecting RBCs from hydrogen peroxide-induced oxidative stress, Free Radic. Res., 47, 164, 10.3109/10715762.2012.756138
Albuquerque, 2005, Vitro protective effect and antioxidant mechanism of resveratrol induced by dapsone hydroxylamine in human cells, PLoS One, 10, 10.1371/journal.pone.0134768
Baldivia, 2018, Evaluation of in vitro antioxidant and anticancer properties of the aqueous extract from the stem bark of Stryphnodendron adstringens, Int. J. Mol. Sci., 19, 2432, 10.3390/ijms19082432
An, 2016, Attenuation of oxidative stress of erythrocytes by plant-derived flavonoids, Orientin Luteolin, Evid. Based Complementary Alternat. Med., 8
Asgary, 2005, Protective effect of flavonoids against red blood cell hemolysis by free radicals, Exp. Clin. Cardiol., 10, 88
Gunawardena, 2019, Increased lipid peroxidation and erythrocyte glutathione peroxidase activity of patients with type 2 diabetes mellitus: implications for obesity and central obesity, Obes. Med., 15
Sarban, 2005, Plasma total antioxidant capacity, lipid peroxidation, and erythrocyte antioxidant enzyme activities in patients with rheumatoid arthritis and osteoarthritis, Clin. Biochem., 38, 981, 10.1016/j.clinbiochem.2005.08.003
Hebbel, 1990, Oxidation-induced changes in microrheologic properties of the red blood cell membrane, Blood, 76, 1015, 10.1182/blood.V76.5.1015.1015
Sekeroglu, 2000, The effect of dietary treatment on erythrocyte lipid peroxidation, superoxide dismutase, glutathione peroxidase, and serum lipid peroxidation in patients with type 2 diabetes mellitus, Clin. Biochem., 33, 669, 10.1016/S0009-9120(00)00190-9
Mossa, 2014, Lipid peroxidation and oxidative stress in rat erythrocytes induced by aspirin and diazinon: the protective role of selenium, Asian Pac. J. Trop. Biomed., 4, 603, 10.12980/APJTB.4.2014APJTB-2013-0038
Mansour, 2009, Lipid peroxidation and oxidative stress in rat erythrocytes induced by chlorpyrifos and the protective effect of zinc, Pestic. Biochem. Physiol., 93, 34, 10.1016/j.pestbp.2008.09.004
Scibior, 2012, Effect of 12-week vanadate and magnesium co-administration on chosen haematological parameters as well as on some indices of iron and copper metabolism and biomarkers of oxidative stress in rats, Environ. Toxicol. Pharmacol., 34, 235, 10.1016/j.etap.2012.04.006
Villa, 2016, Red blood cells: supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems, Adv. Drug Deliv. Rev., 106, 88, 10.1016/j.addr.2016.02.007
Muzykantov, 2010, Drug delivery by red blood cells: vascular carriers designed by Mother Nature, Expet Opin. Drug Deliv., 7, 403, 10.1517/17425241003610633
Lutz, 2019, Cells and cell derivatives as drug carriers for targeted delivery, Med. Drug Discov., 3, 10.1016/j.medidd.2020.100014
Koleva, 2020, Erythrocytes as carriers: from drug delivery to biosensors, Pharmaceutics, 12, 276, 10.3390/pharmaceutics12030276
Villa, 2017, Erythrocytes as carriers for drug delivery in blood transfusion and beyond, Transfus. Med. Rev., 31, 26, 10.1016/j.tmrv.2016.08.004
Villa, 2015, Delivery of drugs bound to erythrocytes: new avenues for an old intravascular carrier, Ther. Deliv., 6, 795, 10.4155/tde.15.34
Krantz, 1997, Red cell-mediated therapy: opportunities and challenges, Blood Cells Mol. Dis., 23, 58, 10.1006/bcmd.1997.0119
He, 2014, Cell-penetrating peptides meditated encapsulation of protein therapeutics into intact red blood cells and its application, J. Contr. Release, 176, 123, 10.1016/j.jconrel.2013.12.019
Muzykantov, 1991, Streptavidin-induced lysis of homologous biotinylated erythrocytes. Evidence against the key role of the avidin charge in complement activation via the alternative pathway, FEBS Lett., 280, 112, 10.1016/0014-5793(91)80216-P
Hoffman, 1992, On red blood cells, hemolysis and resealed ghosts, Adv. Exp. Med. Biol., 326, 1
Tan, 2015, Cell or cell membrane-based drug delivery systems, Theranostics, 5, 863, 10.7150/thno.11852
Hu, 2011, Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform, Proc. Natl. Acad. Sci. U. S. A., 108, 10980, 10.1073/pnas.1106634108
Aryal, 2013, Erythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release, Nanomedicine (Lond), 8, 1271, 10.2217/nnm.12.153
Fan, 2020, An implantable blood clot-based immune niche for enhanced cancer vaccination, Sci. Adv., 6, 10.1126/sciadv.abb4639