Erythrocytes as model cells for biocompatibility assessment, cytotoxicity screening of xenobiotics and drug delivery

Chemico-Biological Interactions - Tập 332 - Trang 109305 - 2020
Maria Podsiedlik1, Magdalena Markowicz-Piasecka2, Joanna Sikora2
1Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland
2Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151 Lodz, Poland

Tài liệu tham khảo

Dzierzak, 2013, Erythropoiesis: development and differentiation, Cold Spring Harb. Perspect. Med., 3, a011601, 10.1101/cshperspect.a011601 Pagano, 2015, The use of erythrocyte fragility to assess xenobiotic cytotoxicity, Cell Biochem. Funct., 33, 351, 10.1002/cbf.3135 Silva-Herdade, 2016, Erythrocyte deformability — a partner of the inflammatory response, Microvasc. Res., 107, 34, 10.1016/j.mvr.2016.04.011 de Oliveira, 2010, An overview about erythrocyte membrane, Clin. Hemorheol. Microcirc., 44, 63, 10.3233/CH-2010-1253 Spychalska, 2012, Red blood cell membranopathies — pathogenesis, clinical presentation and diagnosis, Hematologia, 3, 81 Pasini, 2006, In-depth analysis of the membrane and cytosolic proteome of red blood cells, Blood, 108, 791, 10.1182/blood-2005-11-007799 Kuhn, 2017, Red blood cell function and dysfunction: redox regulation, nitric oxide metabolism, anemia, Antioxidants Redox Signal., 26, 10.1089/ars.2016.6954 D'Alessandro, 2019, Protect, repair, destroy or sacrifice: a role of oxidative stress biology in inter-donor variability of blood storage?, Blood Transfus., 17, 281 Cortese-Krott, 2014, Endothelial nitric oxide synthase in red blood cells: key to a new erythrocrine function?, Redox Biol., 2, 251, 10.1016/j.redox.2013.12.027 Pretorius, 2016, Erythrocytes and their role as health indicator: using structure in a patient-orientated precision medicine approach, Blood Rev. xxx, 10.1016/j.blre.2016.01.001 Pretorius, 2014, Diagnostic morphology: biophysical indicators for iron-driven inflammatory diseases, Integr. Biol., 6, 486, 10.1039/C4IB00025K Lupescu, 2015, Enhanced suicidal erythrocyte death contributing to anemia in the elderly, Cell. Physiol. Biochem., 36, 773, 10.1159/000430137 Cranston, 1984, Plasmodium falciparum maturation abolishes physiologic red cell deformability, Science, 223, 400, 10.1126/science.6362007 Farag, 2018, Erythrocytes as a biological model for screening of xenobiotics toxicity, Chem. Biol. Interact., 279, 73, 10.1016/j.cbi.2017.11.007 Markowicz-Piasecka, 2018, Biocompatible sulfenamide and sulfonamide derivatives of metformin can exert beneficial effects on plasma haemostasis, Chem. Biol. Interact., 280, 15, 10.1016/j.cbi.2017.12.005 Shiva, 2007, In vitro models of oxidative stress in rat erythrocytes: effect of antioxidant supplements, Toxicol. Vitro, 21, 1355, 10.1016/j.tiv.2007.06.010 Weber, 2018, Blood-contacting biomaterials: in vitro evaluation of the hemocompatibility, Front. Bioeng. Biotechnol., 6, 99, 10.3389/fbioe.2018.00099 Liu, 2014, Blood compatible materials: state of the art, J. Mater. Chem. B, 2, 5718, 10.1039/C4TB00881B Sinn, 2011, A novel in vitro model for preclinical testing of the hemocompatibility of intravascular stents according to ISO 10993-4, J. Mater. Sci. Mater. Med., 22, 1521, 10.1007/s10856-011-4335-2 Homann, 2016, Improved ex vivo blood compatibility of central venous catheter with noble metal alloy coating, J. Biomed. Mater. Res. B Appl. Biomater., 104, 1359, 10.1002/jbm.b.33403 Mazzaglia, 2018, Supramolecular adducts of anionic porphyrins and a biocompatible polyamine: effect of photodamage-on human red blood cells, J. Nanosci. Nanotechnol., 18, 7269, 10.1166/jnn.2018.15747 Bonaccorsi, 2013, Sulfenic acid-derived glycoconjugated disulfides and sulfoxides: a biological evaluation on human red blood cells, J. Sulfur Chem., 34, 684, 10.1080/17415993.2013.778259 Saini, 2016, Evaluation of the hemocompatibility and rapid hemostasis of (RADA)4 peptide-based hydrogels, Acta Biomater., 31, 71, 10.1016/j.actbio.2015.11.059 Farooqa, 2017, Synthesis, characterization and modification of Gum Arabic microgels for hemocompatibility and antimicrobial studies, Carbohydr. Polym., 156, 380, 10.1016/j.carbpol.2016.09.052 Sanak, 2010, Assessment of hemocompatibility of materials with arterial blood flow by platelet functional tests, Bulletin of the Polish academy of sciences, Techn. Sci., 58, 317 Seyfert, 2002, In vitro hemocompatibility testing of biomaterials according to the ISO 10993-4, Biomol. Eng., 19, 91, 10.1016/S1389-0344(02)00015-1 Van Oeveren, 2012, Comparison of modified chandler, roller pump, and ball valve circulation models for in vitro testing in high blood flow conditions: application in thrombogenicity testing of different materials for vascular applications, Int. J. Biomater., 10.1155/2012/673163 Biro, 2003, Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner, J. Thromb. Haemostasis, 1, 2561, 10.1046/j.1538-7836.2003.00456.x Markowicz-Piasecka, 2015, Stability of erythrocyte membrane and overall hemostasis potential - a biocompatibility study of mebrofenin and other iminodiacetic acid derivatives, Pharmacol. Rep., 67, 1230, 10.1016/j.pharep.2015.05.021 Totea, 2014, In vitro hemocompatibility and corrosion behavior of new Zr-binary alloys in whole human blood, Open Chem., 12, 796, 10.2478/s11532-014-0535-1 Fischer, 2003, In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis, Biomaterials, 24, 1121, 10.1016/S0142-9612(02)00445-3 Li, 2012, Biocompatibility and toxicity of nanoparticles and nanotubes, J. Nanomater. Rejinold, 2011, Curcumin-loaded biocompatible thermoresponsive polymeric nanoparticles for cancer drug delivery, J. Colloid Interface Sci., 360, 39, 10.1016/j.jcis.2011.04.006 He, 2010, An anti-ROS/hepatic fibrosis drug delivery system based on salvianolic acid B loaded mesoporous silica nanoparticles, Biomaterials, 31, 7785, 10.1016/j.biomaterials.2010.07.008 Szymonowicz, 2015, Haemocompatibility and cytotoxic studies of non-metallic composite materials modified with magnetic nano and microparticles, Acta Bioeng. Biomech., 17, 49 Pasricha, 2014, The red cell membrane, part 1: the role of the red cell membrane, Clin. Adv. Hematol. Oncol., 12, 533 Aoki, 2017, A comprehensive review of our current understanding of red blood cell (RBC) glycoproteins, Membranes (Basel), 7, 56, 10.3390/membranes7040056 Czogalla, 2007, Structural insight into an ankyrin-sensitive lipid-binding site of erythroid β-spectrin, Mol. Membr. Biol., 24, 215, 10.1080/09687860601102427 Wong, 1999, A basis of echinocytosis and stomatocytosis in the disc-sphere transformations of the erythrocyte, J. Theor. Biol., 196, 343, 10.1006/jtbi.1998.0845 Y. Kim, K. Kim, Y.K. Park, Measurement techniques for red blood cell deformability: Recent Adv., doi:10.5772/50698. Stasiuk, 2009, Zmiany kształtu erytrocytów i czynniki je wywołujące, Postepy Biochem., 55, 425 Suwalsky, 2013, Acetylsalicylic acid (aspirin) and salicylic acid interaction with the human erythrocyte membrane bilayer induce in vitro changes in the morphology of erythrocytes, Arch. Biochem. Biophys., 539, 9, 10.1016/j.abb.2013.09.006 Mesquita, 2006, Defocusing microscopy: an approach for red blood cell optics, Appl. Phys. Lett., 88, 10.1063/1.2189010 Swanepoel, 2012, Scanning electron microscopy analysis of erythrocytes in thromboembolic ischemic stroke, Int. J. Lab. Hematol., 34, 185, 10.1111/j.1751-553X.2011.01379.x Smith, 2015, Aspirin in the 21st century—common mechanisms of disease and their modulation by aspirin: a report from the 2015 scientific conference of the international aspirin foundation, 28 August, London, UK, E Canc. Med. Sci., 9, 581 Watala, 1993, Effect of aspirin on conformation and dynamics of membrane proteins in platelets and erythrocytes, Biochem. Pharmacol., 45, 1343, 10.1016/0006-2952(93)90288-8 Li, 1999, Effects of salicylic acid derivatives on red blood cell membranes, Pharmacol. Toxicol., 85, 206, 10.1111/j.1600-0773.1999.tb02010.x Frydman, 2010, Acetylsalicylic acid and morphology of red blood cells, Braz. Arch. Biol. Technol., 53, 575, 10.1590/S1516-89132010000300010 Ahyayauch, 2003, pH dependent effects of chlorpromazine on liposomes and erythrocyte membrane, J. Lipid Res., 13, 147 Ahyayauch, 2004, Interaction of electrically neutral and cationic forms, Int. J. Pharm., 279, 51, 10.1016/j.ijpharm.2004.04.009 Ahyayauch, 2006, Changes in erythrocyte morphology induced by imipramine and chlorpromazine, J. Physiol. Biochem., 62, 199, 10.1007/BF03168469 Suwalsky, 2006, Effects of the antiepileptic drug carbamazepine on human erythrocytes, Toxicol. Vitro, 20, 1363, 10.1016/j.tiv.2006.05.010 Ficarra, 2013, Antiepileptic carbamazepine drug treatment induces alteration of membrane in red blood cells: possible positive effects on metabolism and oxidative stress, Biochimie, 95, 833, 10.1016/j.biochi.2012.11.018 Garcia, 1997, Localization of flunitrazepam in artificial membranes. A spectrophotometric study about the effect the polarity of the medium exerts on flunitrazepam acid–base equilibrium, Biochim. Biophys. Acta, 1324, 76, 10.1016/S0005-2736(96)00210-6 Garcia, 2000, Flunitrazepam partitioning into natural membranes increases surface curvature and alters cellular morphology, Chem. Biol. Interact., 129, 263, 10.1016/S0009-2797(00)00254-4 Reinhart, 2014, Interaction of injectable neurotropic drugs with the red cell membrane, Toxicol. Vitro, 28, 1274, 10.1016/j.tiv.2014.06.008 Suwalsky, 2015, Morphological effects induced in vitro by propranolol on human erythrocytes, J. Membr. Biol., 248, 683, 10.1007/s00232-015-9780-2 Bonarska-Kujawa, 2015, Molecular mechanism of action of chlorogenic acid on erythrocyte and lipid membranes, Mol. Membr. Biol., 32, 46, 10.3109/09687688.2015.1031833 Suwalsky, 2015, In vitro protective effects of resveratrol against oxidative damage in human erythrocytes, Biochim. Biophys. Acta, 1848, 76, 10.1016/j.bbamem.2014.09.009 Suwalsky, 2007, Effects of lithium on the human erythrocyte membrane and molecular models, Biophys. Chem., 129, 36, 10.1016/j.bpc.2007.05.003 Suwalsky, 2005, Iron affects the structure of cell membrane molecular models, Chem. Phys. Lipids, 134, 69, 10.1016/j.chemphyslip.2004.12.004 Suwalsky, 2013, Effects of sodium metavanadate on in vitro neuroblastoma and red blood cells, Arch. Biochem. Biophys., 535, 248, 10.1016/j.abb.2013.04.006 Suwalsky, 2004, The antiepileptic drug diphenylhydantoin affects the structure of the human erythrocyte membrane, Zeitschrift fur Naturforschung C, 59, 427, 10.1515/znc-2004-5-625 Reinhart, 1990, The effect of amiodarone on the erythrocyte shape and membrane properties, Clin. Sci., 79, 387, 10.1042/cs0790387 Reinhart, 1993, Binding of cyclosporine by erythrocytes: influence on cell shape and deformability, Eur. J. Clin. Invest., 23, 177, 10.1111/j.1365-2362.1993.tb00758.x Suwalsky, 1999, The anticancer drug chlorambucil interacts with the human erythrocyte membrane and model phospholipid bilayers, Z. Naturforsch. C Biosci., 54, 1089, 10.1515/znc-1999-1214 Mark, 2001, Commercial taxane formulations induce stomatocytosis and increase blood viscosity, Br. J. Pharmacol., 134, 1207, 10.1038/sj.bjp.0704387 Baerlocher, 1997, The antineoplastic drug 5- fluorouracil produces echinocytosis and affects blood rheology, Br. J. Haematol., 99, 426, 10.1046/j.1365-2141.1997.4003212.x Reinhart, 2003, Influence of propofol on erythrocyte morphology, blood viscosity and platelet function, Clin. Hemorheol. Microcirc., 29, 33 Reinhart, 2005, Influence of contrast media (iopromide, ioxaglate, gadolinium-DOTA) on blood viscosity, erythrocyte morphology and platelet function, Clin. Hemorheol. Microcirc., 32, 227 Manrique-Moreno, 2010, Effects of the nonsteroidal anti-inflammatory drug naproxen on human erythrocytes and on cell membrane molecular models, Biophys. Chem., 147, 53, 10.1016/j.bpc.2009.12.010 Suwalsky, 2015, An in vitro study on the antioxidant capacity of usnic acid on human erythrocytes and molecular models of its membrane, Biochim. Biophys. Acta, 1848, 2829, 10.1016/j.bbamem.2015.08.017 Zambrano, 2019, The acetylcholinesterase (AChE) inhibitor and anti-Alzheimer drug donepezil interacts with human erythrocytes, BBA - Biomembr., 1861, 1078, 10.1016/j.bbamem.2019.03.014 Suwalsky, 2011, Effects of phenylpropanolamine (PPA) on in vitro human erythrocyte membranes and molecular models, Biochem. Biophys. Res. Commun., 406, 320, 10.1016/j.bbrc.2011.01.117 Zambrano, 2017, In vitro effects of the anti-Alzheimer drug memantine on the human erythrocyte membrane and molecular models, Biochem. Biophys. Res. Commun., 483, 528, 10.1016/j.bbrc.2016.12.111 Petit, 2019, In vitro effects of the antitumor drug miltefosine on human erythrocytes and molecular models of its membrane, BBA - Biomembr., 1861, 17, 10.1016/j.bbamem.2018.10.009 Suwalsky, 2015, Interactions of the antiviral and antiparkinson agent amantadine with lipid membranes and human erythrocytes, Biophys. Chem., 202, 13, 10.1016/j.bpc.2015.04.002 Zambrano, 2018, α1-and β-adrenergic antagonist labetalol induces morphological changes in human erythrocytes, Biochem. Biophys. Res. Commun., 503, 209, 10.1016/j.bbrc.2018.06.004 Suwalsky, 2009, Structural effects in vitro of the anti-inflammatory drug diclofenac on human erythrocytes and molecular models of cell membranes, Biophys. Chem., 141, 34, 10.1016/j.bpc.2008.12.010 Mesdaghinia, 2019, An in vitro method to evaluate hemolysis of human red blood cells (RBCs) treated by airborne particulate matter (PM10), MethodsX, 6, 156, 10.1016/j.mex.2019.01.001 Nkrumah, 2011, Hemoglobin estimation by the HemoCue® portable hemoglobin photometer in a resource poor setting, BMC Clin. Pathol., 11 Orhan, 2001, In vitro effects of NSAIDS and paracetamol on oxidative stress-related parameters of human erythrocytes, Exp. Toxicol. Pathol., 53, 133, 10.1078/0940-2993-00179 Górnicki, 2006, Influence of the retinoid acitretin on erythrocyte microrheology in vitro, Int. J. Clin. Pharm. Ther., 44, 648, 10.5414/CPP44648 Crupia, 2019, Susceptibility of erythrocytes from different sources to xenobiotics-induced lysis, Comp. Biochem. Physiol., C, 221, 68 Boehm, 2014, Simply red: a novel spectrophotometric erythroid proliferation assay as a tool for erythropoiesis and erythrotoxicity studies, Biotechnol. Rep., 4, 34, 10.1016/j.btre.2014.07.005 Scala, 2015, A new erythrocyte-based biochemical approach to predict the antiproliferative effects of heterocyclic scaffolds: the case of indolone, Biochim. Biophys. Acta, 1850, 73, 10.1016/j.bbagen.2014.09.022 Briglia, 2017, Eryptosis: ally or enemy, Curr. Med. Chem., 24, 937, 10.2174/0929867324666161118142425 Briglia, 2015, Fucoxanthin induced suicidal death of human erythrocytes, Cell. Physiol. Biochem., 37, 2464, 10.1159/000438599 Pretorius, 2016, A comprehensive review on eryptosis, Cell. Physiol. Biochem., 39, 1977, 10.1159/000447895 Qadri, 2017, Eryptosis in health and disease: a paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes, Blood Rev., 31, 349, 10.1016/j.blre.2017.06.001 Pyrshev, 2018, Apoptosis and eryptosis: striking differences on biomembrane level, Biochim. Biophys. Acta Biomembr., 1860, 1362, 10.1016/j.bbamem.2018.03.019 Mahmud, 2009, Arsenic-induced suicidal erythrocyte death, Arch. Toxicol., 83, 107, 10.1007/s00204-008-0338-2 Bissinger, 2019, Oxidative stress, eryptosis and anemia: a pivotalmechanistic nexus in systemic diseases, FEBS J., 286, 826, 10.1111/febs.14606 Lang, 2015, Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death, Semin. Cell Dev. Biol., 39, 35, 10.1016/j.semcdb.2015.01.009 Mandal, 2012, S-allyl cysteine in combination with clotrimazole downregulates Fas induced apoptotic events in erythrocytes of mice exposed to lead, Biochim. Biophys. Acta, 1820, 9, 10.1016/j.bbagen.2011.09.019 Lang, 2005, PGE(2) in the regulation of programmed erythrocyte death, Cell Death Differ., 12, 415, 10.1038/sj.cdd.4401561 Abed, 2012, Sphingomyelinase-induced adhesion of eryptotic erythrocytes to endothelial cells, Am. J. Physiol. Cell Physiol., 303, C991, 10.1152/ajpcell.00239.2012 Calabro, 2015, Enhanced eryptosis following juglone exposure, Basic Clin. Pharmacol. Toxicol., 116, 460, 10.1111/bcpt.12340 Seshadri, 2011, Plumbagin and juglone induce caspase-3-dependent apoptosis involving the mitochondria through ROS generation in human peripheral blood lymphocytes, Free Radic. Biol. Med., 51, 2090, 10.1016/j.freeradbiomed.2011.09.009 Lang, 2012, Killing me softly - suicidal erythrocyte death, Int. J. Biochem. Cell Biol., 44, 1236, 10.1016/j.biocel.2012.04.019 Attanasio, 2015, Enhanced suicidal erythrocyte death in acute cardiac failure, Eur. J. Clin. Invest., 45, 1316, 10.1111/eci.12555 Bester, 2013, High ferritin levels have major effects on the morphology of erythrocytes in Alzheimer's disease, Front. Aging Neurosci., 5, 88, 10.3389/fnagi.2013.00088 Briglia, 2015, Triggering of suicidal erythrocyte death by zosuquidar, Cell. Physiol. Biochem., 37, 2355, 10.1159/000438589 Fazio, 2015, Oxaliplatin induced suicidal death of human erythrocytes, Cell. Physiol. Biochem., 37, 2393, 10.1159/000438592 Lang, 2013, Effect of thioridazine on erythrocytes, Toxins, 5, 1918, 10.3390/toxins5101918 Signoretto, 2016, Nocodazole induced suicidal death of human erythrocytes, Cell. Physiol. Biochem., 38, 379, 10.1159/000438638 Calabro, 2015, Triggering of suicidal erythrocyte death following boswellic acid exposure, Cell. Physiol. Biochem., 37, 131, 10.1159/000430339 Fazio, 2015, Stimulation of suicidal erythrocyte death by garcinol, Cell. Physiol. Biochem., 37, 805, 10.1159/000430397 Lupescu, 2012, Hexavalent chromium-induced erythrocyte membrane phospholipid asymmetry, Biometals, 25, 309, 10.1007/s10534-011-9507-5 Shaik, 2012, Sunitinib-sensitive suicidal erythrocyte death, Cell. Physiol. Biochem., 30, 512, 10.1159/000341434 Abed, 2012, Stimulation of suicidal death of erythrocytes by rifampicin, Toxicology, 302, 123, 10.1016/j.tox.2012.10.006 Abed, 2013, Tannic Acid induced suicidal erythrocyte death, Cell. Physiol. Biochem., 32, 1106, 10.1159/000354510 Zelenak, 2012, Tanshinone IIA stimulates erythrocyte phosphatidylserine exposure, Cell. Physiol. Biochem., 30, 282, 10.1159/000339064 Jilani, 2011, Triggering of erythrocyte cell membrane scrambling by ursolic acid, J. Nat. Prod., 74, 2181, 10.1021/np2005133 Bissinger, 2014, Effect of saponin on erythrocytes, Int. J. Hematol., 100, 51, 10.1007/s12185-014-1605-z Zbidah, 2012, Apigenin-induced suicidal erythrocyte death, J. Agric. Food Chem., 60, 533, 10.1021/jf204107f Lang, 2015, Ceramide in the regulation of eryptosis, the suicidal erythrocyte death, Apoptosis, 20, 758, 10.1007/s10495-015-1094-4 Jilani, 2013, Fluoxetine induced suicidal erythrocyte death, Toxins (Basel), 5, 1230, 10.3390/toxins5071230 Lang, 2012, Mechanisms and significance of eryptosis, the suicidal death of erythrocytes, Blood Purif., 33, 125, 10.1159/000334163 Boulet, 2018, Manipulating eryptosis of human red blood cells: a novel antimalarial strategy?, Front. Cell Infect. Microbiol., 8, 419, 10.3389/fcimb.2018.00419 Markowicz-Piasecka, 2017, New prodrugs of metformin do not influence the overall haemostasis potential and integrity of the erythrocyte membrane, Eur. J. Pharmacol., 811, 208, 10.1016/j.ejphar.2017.06.011 Officioso, 2016, Bromfenvinphos induced suicidal death of human erythrocytes, Pestic. Biochem. Physiol., 126, 58, 10.1016/j.pestbp.2015.07.007 Nicolay, 2007, Stimulation of erythrocyte cell membrane scrambling by amiodarone, Cell. Physiol. Biochem., 20, 1043, 10.1159/000110713 Föller, 2008, Stimulation of suicidal erythrocyte death by amantadine, Eur. J. Pharmacol., 581, 13, 10.1016/j.ejphar.2007.11.051 Mahmud, 2009, Triggering of suicidal erythrocyte death by amphotericin B, Cell. Physiol. Biochem., 24, 263, 10.1159/000233251 Bobbala, 2009, Azathioprine favourably influences the course of malaria, Malar. J., 8, 102, 10.1186/1475-2875-8-102 Lupescu, 2013, Triggering of suicidal erythrocyte death by celecoxib, Toxins (Basel), 5, 1543, 10.3390/toxins5091543 Koka, 2008, Influence of chlorpromazine on eryptosis, parasitemia and survival of plasmodium berghei infected mice, Cell. Physiol. Biochem., 22, 261, 10.1159/000149804 Mahmud, 2008, Suicidal erythrocyte death triggered by cisplatin, Toxicology, 249, 40, 10.1016/j.tox.2008.04.003 Niemoeller, 2006, Induction of eryptosis by cyclosporine, Naunyn-Schmiedeberg’s Arch. Pharmacol., 374, 41, 10.1007/s00210-006-0099-5 Nicolay, 2010, Lithium-induced suicidal erythrocyte death, J. Psychopharmacol., 24, 1533, 10.1177/0269881109102631 Bissinger, 2015, Stimulation of suicidal erythrocyte death by the antimalarial drug mefloquine, Cell. Physiol. Biochem., 36, 1395, 10.1159/000430305 Qadri, 2009, Stimulation of ceramide formation and suicidal erythrocyte death by vitamin K(3) (menadione), Eur. J. Pharmacol., 623, 10, 10.1016/j.ejphar.2009.09.011 Mahmud, 2008, Stimulation of erythrocyte cell membrane scrambling by methyldopa, Kidney Blood Press. Res., 31, 299, 10.1159/000153250 Bissinger, 2015, Induction of suicidal erythrocyte death by nelfinavir, Toxins (Basel), 7, 1616, 10.3390/toxins7051616 Lupescu, 2014, Induction of suicidal erythrocyte death by novobiocin, Cell. Physiol. Biochem., 33, 670, 10.1159/000358643 Malik, 2015, Stimulation of erythrocyte cell membrane scrambling by nystatin, Basic Clin. Pharmacol. Toxicol., 116, 47, 10.1111/bcpt.12279 Lang, 2006, Stimulation of erythrocyte phosphatidylserine exposure by paclitaxel, Cell. Physiol. Biochem., 18, 151, 10.1159/000095190 Niemoeller, 2008, Retinoic acid induced suicidal erythrocyte death, Cell. Physiol. Biochem., 21, 193, 10.1159/000113761 Oswald, 2014, Stimulation of suicidal erythrocyte death by ribavirin, Basic Clin. Pharmacol. Toxicol., 114, 311, 10.1111/bcpt.12165 Waibel1, 2016, Ritonavir-induced suicidal death of human erythrocytes, Basic Clin. Pharmacol. Toxicol., 119, 51, 10.1111/bcpt.12547 Briglia, 2015, Triggering of suicidal erythrocyte death by ruxolitinib, Cell. Physiol. Biochem., 37, 768, 10.1159/000430394 Bissinger, 2015, Triggering of suicidal erythrocyte death by topotecan, Cell. Physiol. Biochem., 37, 1607, 10.1159/000438527 Schneider, 2007, Suicidal erythrocyte death following cellular K+ loss, Cell. Physiol. Biochem., 20, 35, 10.1159/000104151 Repsold, 2018, Eryptosis: an erythrocyte's suicidal type of cell death, BioMed Res. Int., 5, 1, 10.1155/2018/9405617 Lang, 2010, Ceramide in suicidal death of erythrocytes, Cell. Physiol. Biochem., 26, 21, 10.1159/000315102 Kasinathan, 2007, Inhibition of eryptosis and intraerythrocytic growth of Plasmodium falciparum by flufenamic acid, N. Schmied. Arch. Pharmacol., 374, 255, 10.1007/s00210-006-0122-x Kucherenko, 2008, Inhibition of cation channels and suicidal death of human erythrocytes by zidovudine, Toxicology, 253, 62, 10.1016/j.tox.2008.08.012 Kucherenko, 2012, Inhibitory effect of furosemide on non-selective voltage-independent cation channels in human erythrocytes, Cell. Physiol. Biochem., 30, 863, 10.1159/000341464 Cimen, 2008, Free radical metabolism in human erythrocytes, Clin. Chim. Acta, 390, 1, 10.1016/j.cca.2007.12.025 Scott, 1989, Enhancement of erythrocyte superoxide dismutase activity: effects on cellular oxidant defense, Blood, 74, 2542, 10.1182/blood.V74.7.2542.2542 Wolff, 1994, Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides, Methods Enzymol., 233, 182, 10.1016/S0076-6879(94)33021-2 Biswas, 2008, Mechanism of erythrocyte death in human population exposed to arsenic through drinking water, Toxicol. Appl. Pharmacol., 230, 57, 10.1016/j.taap.2008.02.003 Zhao, 2005, Detection and characterization of the product of hydroethidium and intracellular superoxide by HPLC and limitations of fluores-cence, Proc. Natl. Acad. Sci. U. S. A., 102, 5727, 10.1073/pnas.0501719102 Qian, 2009, The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris, Aquat. Toxicol., 92, 250, 10.1016/j.aquatox.2009.02.008 Ohkawa, 1979, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem., 95, 351, 10.1016/0003-2697(79)90738-3 Yagi, 1984, Assay for blood plasma or serum, Methods Enzymol., 105, 328, 10.1016/S0076-6879(84)05042-4 Bartosz, 2004 Uchida, 1993, Covalent attachment of 4-hydroxynonenal to glyceraldehyde- 3-phosphate dehydrogenase, J. Biol. Chem., 268, 6388, 10.1016/S0021-9258(18)53264-6 Biswas, 2010, Reduced cellular redox status induces 4-hydroxynonenal- mediated caspase 3 activation leading to erythrocyte death during chronic arsenic exposure in rats, Toxicol. Appl. Pharmacol., 244, 315, 10.1016/j.taap.2010.01.009 Tietze, 1969, Enzymatic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues, Anal. Biochem., 27, 502, 10.1016/0003-2697(69)90064-5 Paglia, 1967, Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase, Lab. Clin. Med., 70, 158 Habig, 1974, The first enzymatic step in mercapturic acid formation, J. Biol. Chem., 249, 7130, 10.1016/S0021-9258(19)42083-8 Mannervik, 2001, Measurement of glutathione reductase activity, Curr. Protoc. Toxicol., 7, 7.2.1 Spitz, 1989, An assay for superoxide dismutase activity in mammalian tissue homogenates, Anal. Biochem., 179, 8, 10.1016/0003-2697(89)90192-9 Aebi, 1984, Catalase in vitro, Methods Enzymol., 105, 121, 10.1016/S0076-6879(84)05016-3 Okamoto, 2004, Verapamil prevents impairment in filterability of human erythrocytes exposed to oxidative stress, Jpn. J. Physiol., 54, 39, 10.2170/jjphysiol.54.39 Mohanty, 2014, Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging, Front. Physiol., 5, 84, 10.3389/fphys.2014.00084 Panghal, 2020, Gallic acid and MiADMSA reversed arsenic induced oxidative/nitrosative damage in rat red blood cells, Heliyon, 6, 10.1016/j.heliyon.2020.e03431 Tayeb, 2011, Subacute effects of 2,4-dichlorophenoxyacetic herbicide on antioxidant defensesystem and lipid peroxidation in rat erythrocytes, Pestic. Biochem. Physiol., 99, 256, 10.1016/j.pestbp.2011.01.004 Sicinska, 2020, Human erythrocytes exposed to phthalates and their metabolites alter antioxidant enzyme activity and hemoglobin oxidation, Int. J. Mol. Sci., 21, 4480, 10.3390/ijms21124480 Meléndez-Martínez, 2017, Rattlesnake Crotalus molossus nigrescens venom induces oxidative stress on human erythrocytes, Toxins Trop. Dis., 23, 24 Qasim, 2015, Diminution of oxidative damage to human erythrocytes and lymphocytes by creatine: possible role of creatine in blood, PLoS One, 10, 10.1371/journal.pone.0141975 Nagababu, 2013, Role of peroxiredoxin-2 in protecting RBCs from hydrogen peroxide-induced oxidative stress, Free Radic. Res., 47, 164, 10.3109/10715762.2012.756138 Albuquerque, 2005, Vitro protective effect and antioxidant mechanism of resveratrol induced by dapsone hydroxylamine in human cells, PLoS One, 10, 10.1371/journal.pone.0134768 Baldivia, 2018, Evaluation of in vitro antioxidant and anticancer properties of the aqueous extract from the stem bark of Stryphnodendron adstringens, Int. J. Mol. Sci., 19, 2432, 10.3390/ijms19082432 An, 2016, Attenuation of oxidative stress of erythrocytes by plant-derived flavonoids, Orientin Luteolin, Evid. Based Complementary Alternat. Med., 8 Asgary, 2005, Protective effect of flavonoids against red blood cell hemolysis by free radicals, Exp. Clin. Cardiol., 10, 88 Gunawardena, 2019, Increased lipid peroxidation and erythrocyte glutathione peroxidase activity of patients with type 2 diabetes mellitus: implications for obesity and central obesity, Obes. Med., 15 Sarban, 2005, Plasma total antioxidant capacity, lipid peroxidation, and erythrocyte antioxidant enzyme activities in patients with rheumatoid arthritis and osteoarthritis, Clin. Biochem., 38, 981, 10.1016/j.clinbiochem.2005.08.003 Hebbel, 1990, Oxidation-induced changes in microrheologic properties of the red blood cell membrane, Blood, 76, 1015, 10.1182/blood.V76.5.1015.1015 Sekeroglu, 2000, The effect of dietary treatment on erythrocyte lipid peroxidation, superoxide dismutase, glutathione peroxidase, and serum lipid peroxidation in patients with type 2 diabetes mellitus, Clin. Biochem., 33, 669, 10.1016/S0009-9120(00)00190-9 Mossa, 2014, Lipid peroxidation and oxidative stress in rat erythrocytes induced by aspirin and diazinon: the protective role of selenium, Asian Pac. J. Trop. Biomed., 4, 603, 10.12980/APJTB.4.2014APJTB-2013-0038 Mansour, 2009, Lipid peroxidation and oxidative stress in rat erythrocytes induced by chlorpyrifos and the protective effect of zinc, Pestic. Biochem. Physiol., 93, 34, 10.1016/j.pestbp.2008.09.004 Scibior, 2012, Effect of 12-week vanadate and magnesium co-administration on chosen haematological parameters as well as on some indices of iron and copper metabolism and biomarkers of oxidative stress in rats, Environ. Toxicol. Pharmacol., 34, 235, 10.1016/j.etap.2012.04.006 Villa, 2016, Red blood cells: supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems, Adv. Drug Deliv. Rev., 106, 88, 10.1016/j.addr.2016.02.007 Muzykantov, 2010, Drug delivery by red blood cells: vascular carriers designed by Mother Nature, Expet Opin. Drug Deliv., 7, 403, 10.1517/17425241003610633 Lutz, 2019, Cells and cell derivatives as drug carriers for targeted delivery, Med. Drug Discov., 3, 10.1016/j.medidd.2020.100014 Koleva, 2020, Erythrocytes as carriers: from drug delivery to biosensors, Pharmaceutics, 12, 276, 10.3390/pharmaceutics12030276 Villa, 2017, Erythrocytes as carriers for drug delivery in blood transfusion and beyond, Transfus. Med. Rev., 31, 26, 10.1016/j.tmrv.2016.08.004 Villa, 2015, Delivery of drugs bound to erythrocytes: new avenues for an old intravascular carrier, Ther. Deliv., 6, 795, 10.4155/tde.15.34 Krantz, 1997, Red cell-mediated therapy: opportunities and challenges, Blood Cells Mol. Dis., 23, 58, 10.1006/bcmd.1997.0119 He, 2014, Cell-penetrating peptides meditated encapsulation of protein therapeutics into intact red blood cells and its application, J. Contr. Release, 176, 123, 10.1016/j.jconrel.2013.12.019 Muzykantov, 1991, Streptavidin-induced lysis of homologous biotinylated erythrocytes. Evidence against the key role of the avidin charge in complement activation via the alternative pathway, FEBS Lett., 280, 112, 10.1016/0014-5793(91)80216-P Hoffman, 1992, On red blood cells, hemolysis and resealed ghosts, Adv. Exp. Med. Biol., 326, 1 Tan, 2015, Cell or cell membrane-based drug delivery systems, Theranostics, 5, 863, 10.7150/thno.11852 Hu, 2011, Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform, Proc. Natl. Acad. Sci. U. S. A., 108, 10980, 10.1073/pnas.1106634108 Aryal, 2013, Erythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release, Nanomedicine (Lond), 8, 1271, 10.2217/nnm.12.153 Fan, 2020, An implantable blood clot-based immune niche for enhanced cancer vaccination, Sci. Adv., 6, 10.1126/sciadv.abb4639