Effect of slow pyrolysis conditions on biocarbon yield and properties: Characterization of the volatiles

Elsevier BV - Tập 338 - Trang 125567 - 2021
B. Babinszki1,2, Z. Sebestyén1, E. Jakab1, L. Kőhalmi1, J. Bozi1, G. Várhegyi1, L. Wang3, Ø. Skreiberg3, Zs. Czégény1
1Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary
2ELTE Eötvös Loránd University, Hevesy György PhD School of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
3SINTEF Energy Research, Sem Sælands vei 11, Trondheim NO-7034, Norway

Tài liệu tham khảo

Akhtar, 2018, A combined overview of combustion, pyrolysis, and gasification of biomass, Energy Fuels, 32, 7294, 10.1021/acs.energyfuels.8b01678 Antal, 2003, The art, science and technology of charcoal production, Ind. Eng. Chem. Res., 42, 1619, 10.1021/ie0207919 Babinszki, 2020, Comparison of hydrothermal carbonization and torrefaction of azolla biomass: Analysis of the solid products, J. Anal. Appl. Pyrol., 149, 104844, 10.1016/j.jaap.2020.104844 Bhaskar, 2015, Advances in thermochemical conversion of biomass, 3 Borgohain, 2020, Temperature effect on biochar produced from tea (Camellia sinensis L.) pruning litters: A comprehensive treatise on physico-chemical and statistical approaches, Bioresour. Technol., 318, 124023, 10.1016/j.biortech.2020.124023 Brebu, 2013, Thermal degradation of various lignins by TG-MS/FTIR and Py-GC/MS, J. Anal. Appl. Pyrol., 104, 531, 10.1016/j.jaap.2013.05.016 Brunner, 1980, The significance of heating rate on char yield and char properties in the pyrolysis of cellulose, Carbon, 18, 217, 10.1016/0008-6223(80)90064-0 Conti, 2016, Comparison of chemical and physical indices of thermal stability of biochars from different biomass by analytical pyrolysis and thermogravimetry, J. Anal. Appl. Pyrol., 122, 160, 10.1016/j.jaap.2016.10.003 Crombie, 2015, Biochar - synergies and trade-offs between soil enhancing properties and C sequestration potential, GCB Bioenergy, 7, 1161, 10.1111/gcbb.12213 Elkasabi, 2021, Progress on biobased industrial carbons as thermochemical biorefinery coproducts, Energy Fuels, 35, 5627, 10.1021/acs.energyfuels.1c00182 Elyounssi, 2012, Improvement of charcoal yield by two-step pyrolysis on eucalyptus wood: A thermogravimetric study, Fuel, 96, 161, 10.1016/j.fuel.2012.01.030 Fabbri, 2012, Analytical pyrolysis of synthetic chars derived from biomass with potential agronomic application (biochar). Relationships with impacts on microbial carbon dioxide production, J. Anal. Appl. Pyrol., 93, 77, 10.1016/j.jaap.2011.09.012 Fernández-Sanromán, 2021, Bridging the gap to hydrochar production and its application into frameworks of bioenergy, environmental and biocatalysis areas, Bioresour. Technol., 320, 124399, 10.1016/j.biortech.2020.124399 Guedes, 2018, Operating parameters for bio-oil production in biomass pyrolysis: a review, J. Anal. Appl. Pyrol., 129, 134, 10.1016/j.jaap.2017.11.019 Hupa, 2017, Biomass combustion technology development- it is all about chemical details, Proc. Combust. Inst., 36, 113, 10.1016/j.proci.2016.06.152 Jiang, 2010, Effect of the temperature on the composition of lignin pyrolysis products, Energy Fuels, 24, 4470, 10.1021/ef100363c Kaal, 2012, Rapid molecular screening of black carbon (biochar) thermosequences obtained from chestnut wood and rice straw: A pyrolysis-GC/MS study, Biomass Bioenergy, 45, 115, 10.1016/j.biombioe.2012.05.021 Kumar, 2020, Hydrochar and biochar: Production, physicochemical properties and technoeconomic analysis, Bioresour. Technol., 310, 10.1016/j.biortech.2020.123442 Leng, 2018, An overview of the effect of pyrolysis process parameters on biochar stability, Bioresour. Technol., 270, 627, 10.1016/j.biortech.2018.09.030 Lourenco, A., Pereira, H., 2018. Compositional variability of lignin in biomass, in: Poletto, M., (Ed.) Lignin – Trends in Applications. Intech Open, pp. 65-98. DOI: 10.5772/intechopen.71208. Maggi, 1994, Comparison between ‘slow’ and ‘flash’ pyrolysis oils from biomass, Fuel, 73, 671, 10.1016/0016-2361(94)90007-8 Mašek, 2013, Influence of production conditions on the yield and environmental stability of biochar, Fuel, 103, 151, 10.1016/j.fuel.2011.08.044 Mészáros, 2007, Do all carbonized charcoals have the same chemical structure? 1. Implications of thermogravimetry-mass spectrometry measurements, Ind. Eng. Chem. Res., 46, 5943, 10.1021/ie0615842 Mészáros, 2007, TG/MS, Py-GC/MS and THM-GC/MS study of the composition and thermal behavior of extractive components of Robinia pseudoacacia, J. Anal. Appl. Pyrol., 79, 61, 10.1016/j.jaap.2006.12.007 Mok, 1992, Formation of charcoal from biomass in a sealed reactor, Ind. Eng. Chem. Res., 31, 1162, 10.1021/ie00004a027 Nzediegwu, 2021, Carbonization temperature and feedstock type interactively affect chemical, fuel, and surface properties of hydrochars, Bioresour. Technol., 330, 124976, 10.1016/j.biortech.2021.124976 Rao, 1982, On the mechanism of catalysis of the Boudouard reaction by alkali-metal compounds, Carbon, 20, 207, 10.1016/0008-6223(82)90022-7 Rathnayake, 2020, How to trace back an unknown production temperature of biochar from chemical characterization methods in a feedstock independent way, J. Anal. Appl. Pyrol., 151, 104926, 10.1016/j.jaap.2020.104926 Raveendran, 1996, Pyrolysis characteristics of biomass and biomass components, Fuel, 75, 987, 10.1016/0016-2361(96)00030-0 Routa, J., Brannstrom, H., Anttila, P., Makinen, M., Janis, J., Asikainen, A., 2017. Wood extractives of Finnish pine, spruce and birch – availability and optimal sources of compounds: Natural resources and bioeconomy studies 73/2017, Natural Resources Institute Finland (Luke), Helsinki. Sarker, 2015, Characterization and pilot scale fluidized bed gasification of herbaceous biomass: a case study on alfalfa pellets, Energy Convers. Manage., 91, 451, 10.1016/j.enconman.2014.12.034 Sjöström, 1993 Sluiter, 2012 Stimely, 1985, Effects of species, specimen size, and heating rate on char yield and fuel properties, Wood Fiber Sci., 17, 477 Tintner, 2018, Impact of pyrolysis temperature on charcoal characteristics, Ind. Eng. Chem. Res., 57, 15613, 10.1021/acs.iecr.8b04094 Varhegyi, 1988, Simultaneous thermogravimetric-mass spectrometric studies of the thermal decomposition of biopolymers. 1. Avicel cellulose in the presence and absence of catalysts, Energy Fuels, 2, 267, 10.1021/ef00009a007 Várhegyi, 1998, TG, TG-MS and FTIR chatacterization of high-yield biomass charcoals, Energy Fuels, 12, 969, 10.1021/ef9800359 Wang, 2013, Is elevated pressure required to achieve a high fixed-carbon yield of charcoal from biomass? Part 2: The importance of particle size, Energy Fuels, 27, 2146, 10.1021/ef400041h Wang, 2016, Experimental study on charcoal production from woody biomass, Energy Fuels, 30, 7994, 10.1021/acs.energyfuels.6b01039 Williams, 1996, The influence of temperature and heating rate on the slow pyrolysis of biomass, Renew. Energy, 7, 233, 10.1016/0960-1481(96)00006-7 Zhang, 2017, Study on two-step pyrolysis of soybean stalk by TG-FTIR and Py-GC/MS, J. Anal. Appl. Pyrol., 127, 91, 10.1016/j.jaap.2017.08.019 Zhang, 2020, Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar, Bioresour. Technol., 296, 122318, 10.1016/j.biortech.2019.122318