Quantum dynamics study on the exchange H+OH+ reaction

Computational and Theoretical Chemistry - Tập 1012 - Trang 1-7 - 2013
Wenwu Xu1, Wenliang Li1, Peiyu Zhang1
1State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China

Tài liệu tham khảo

Ng, 2002, State-selected and state-to-state ion−molecule reaction dynamics, J. Phys. Chem. A, 106, 5953, 10.1021/jp020055i González, 1993, A comparison between experimental and theoretical excitation functions for the O++H2 (4A″) system using trajectory calculations over a wide energy range, J. Chem. Phys., 98, 2927, 10.1063/1.464120 Martínez, 2004, Ab initio analytical potential energy surface and quasiclassical trajectory study of the O+(4S)+H2(X1Σg+)→OH+(X3Σ-)+H(2S) reaction and isotopic variants, J. Chem. Phys., 120, 4705, 10.1063/1.1638735 Martínez, 2005, Cross sections of the O++H2→OH++H ion–molecule reaction and isotopic variants (D2,HD): quasiclassical trajectory study and comparison with experiments, J. Chem. Phys., 123, 174312, 10.1063/1.2098667 Martínez, 2006, Exact quantum dynamics study of the O++H2 (v=0, j=0)→OH++H ion–molecule reaction and comparison with quasiclassical trajectory calculations, J. Chem. Phys., 124, 144301, 10.1063/1.2179429 Martínez, 2006, Time dependent quantum dynamics study of the O++H2 (v=0, j=0)→OH++H ion–molecule reaction and isotopic variants (D2, HD), J. Chem. Phys., 125, 164305, 10.1063/1.2359727 Xu, 2012, Coriolis coupling effects in O+(4S)+H2(X1Σg+)→OH+(X3Σ-)+H(2S) reaction and its isotopic variants: exact time-dependent quantum scattering study, J. Phys. Chem. A, 116, 10882, 10.1021/jp305612t González, 1989, Dynamics of the ion–molecule reaction and some of its isotopic variants (D2 and HD). I. Potential energy surface and preliminary quasiclassical trajectory analysis, Chem. Phys., 131, 335, 10.1016/0301-0104(89)80180-6 González, 1989, Dynamics of the ion–molecule reaction and some of its isotopic variants (D2 and HD). II. Quasiclassical trajectory study in the range of relative energies 0.25–6.30 eV, Chem. Phys., 131, 347, 10.1016/0301-0104(89)80181-8 González, 1993, Effect of reagent rotation on the dynamics of the O++H2 ion–molecule reaction and isotopic variants, Chem. Phys. Lett., 204, 578, 10.1016/0009-2614(93)89208-Y Burley, 1987, Translational energy dependence of O+ (4S)+H2 (D2,HD)→OH+ (OD+)+H(D) from thermal energies to 30eVcm., Int. J. Mass Spectrom. Ion Process., 80, 153, 10.1016/0168-1176(87)87027-1 Chu, 2012, Coriolis coupling effect in molecular reaction dynamics, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 108, 10, 10.1039/c2pc90001g Chu, 2008, Effect of coriolis coupling in chemical reaction dynamics, Phys. Chem. Chem. Phys., 10, 2431, 10.1039/b715180b Chu, 2006, The time-dependent quantum wave packet approach to the electronically nonadiabatic processes in chemical reactions, Int. Rev. Phys. Chem., 25, 201, 10.1080/01442350600677929 Zhang, 2003, Time-dependent quantum wave packet calculation for nonadiabatic F(2P3/2, 2P1/2)+H2 reaction, J. Chem. Phys., 119, 12921, 10.1063/1.1626537 Xie, 2003, Calculations of the F+HD reaction on three potential energy surfaces, Phys. Chem. Chem. Phys., 5, 2034, 10.1039/B300763D Chu, 2007, Significant nonadiabatic effects in the S(1D)+HD reaction, J. Phys. Chem. A, 111, 8286, 10.1021/jp075173q Zhang, 2013, An investigation of electronic nonadiabaticity in the D+HBr and H+DBr reaction on new diabatic potential energy surfaces, Commun. Comput. Chem., 1, 40, 10.4208/cicc.2013.v1.n1.5 Zhang, 2013, Five new ab initio potential energy surfaces for the O(3P, 1D)+H2 system, Commun. Comput. Chem., 1, 63, 10.4208/cicc.2013.v1.n1.7 Guadagnini, 1995, Global potential energy surfaces for the lowest 1A′, 3A″, and 1A″ states of HNO, J. Chem. Phys., 102, 774, 10.1063/1.469191 Jorfi, 2011, State-to-state quantum dynamics calculations of the C+OH reaction on the second excited potential energy surface, J. Phys. Chem. A, 115, 8791, 10.1021/jp202879n Zhang, 1999 Zhang, 1997, Development of accurate quantum dynamical methods for tetraatomic reactions, J. Phys. Chem. A., 101, 2746, 10.1021/jp9620734 Panda, 2003, Bound and quasibound states of He2H+ and He2D+, J. Phys. Chem. A, 107, 7125, 10.1021/jp0301296 Bhattacharya, 2009, Time-dependent quantum dynamics of the He+H+He reaction, J. Phys. B: At. Mol. Opt. Phys., 42, 085201, 10.1088/0953-4075/42/8/085201 Chu, 2005, Nonadiabatic time-dependent wave packet study of the D++H2 reaction system, J. Phys. Chem. A, 109, 2050, 10.1021/jp0451391 Yang, 2013, Quasi-classical trajectory study of the effects of reactant to-vibrational excitation on the H+LiH+→Li++H2 reaction, Commun. Comput. Chem., 1, 15, 10.4208/cicc.2013.v1.n1.3