Enhancing the Halal Food Industry by Utilizing Food Wastes to Produce Value-added Bioproducts
Tài liệu tham khảo
Abd Manaf, L., Abu Samah, M.A. & Mohd Zukki, N.I. (2009). Municipal solid waste management in Malaysia: Practice and challenges. Waste Management, 29, 2902-2906.
Abdul Jalil, M. (2010). Sustainable development in Malaysia: A case study on householod waste management. Journal of Sustainable Development, 3(3), 91-102.
Cheng, C.L., Lo, Y.C., Lee, K.S., Lee, D.J., Lin, C.Y. & Chang, J.S. (2011). Biohydrogen production from lignocellulosic feedstock. Bioresource Technology, 102(18), 8514-8523.
Cherubini, F. & Ulgiati, S., 2010. Crop residues as raw materials for biorefinery systems – A LCA case study. Applied Energy 87, 47-57.
del Campo, I., Alegría, I., Zazpe, M., Echeverría, M. & Echeverría, I. (2006). Diluted acid hydrolysis pretreatment of agri-food wastes for bioethanol production. Industrial Crops and Products, 24(3), 214-221.
Dermibas, M.F., 2009. Biorefineries for biofuel upgrading: A critical review. Applied Energy, 86, S153- S161.
Elbeshbishy, E., Hafez, H. & Nakhla, G. (2011). Ultrasonication for biohydrogen production from food waste. International Journal of Hydrogen Energy, 36(4), 2896-2903.
Fitzpatrick, M., Champagne, P., Cunningham, M.F. & Whitney, R.A., 2010. A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresource Technology, 101, 8915-8922.
Ghofar, A., Ogawa, S. & Kokugan, T. (2005). Production of L-lactic acid from fresh cassava roots slurried with tofu liquid waste by Streptococcus bovis. Journal of Bioscience and Bioengineering, 100(6), 606-612.
Guillermo, C.K., Frank, K., Agbogbo, & Holtzapple, M.T. (2006). Lime treatment of shrimp head waste for the generation of highly digestible animal feed. Bioresource Technology, 97(13), 1515-1520.
Halal Malaysia. (2006). Halal definition. Available: http://www.halal.gov.my/v3/index.php/en/about- halal-certification/halal-definition.
Hassan, T.E. & Heath, J.L. (1986). Biological fermentation of fish waste for potential use in animal and poultry feeds. Agricultural Wastes, 15(1),1-15.
Hilkiah Igoni, A., Ayotamuno, M.J., Eze, C.L., Ogaji, S.O.T. & Probert, S.D. (2008). Design of anaerobic digesters for producing biogas from municipal solid-waste. Applied Energy, 85(6), 430-438.
Johari, A., Isa Ahmed, S., Hashim, H., Alkali, H. & Ramli, M. (2012). Economic and environmental benefits of landfill gas from municipal solid waste in Malaysia. Renewable and Sustainable Energy Reviews, 16, 2907-2912.
Karla M. Muñoz-Páez, Ríos-Leal, E., Valdez-Vazquez, I., Rinderknecht-Seijas, N., Héctor M. & Poggi- Varaldo. (2012). Re-fermentation of washed spent solids from batch hydrogenogenic fermentation for additional production of biohydrogen from the organic fraction of municipal solid waste, Journal of Environmental Management, 95, S355-S359.
Kvesitadze, G., Sadunishvili, T., Dudauri, T., Zakariashvili, N., Partskhaladze, G., Ugrekhelidze, V., Tsiklauri, G., Metreveli, B. & Jobava, M. (2012). Two-stage anaerobic process for bio-hydrogen and bio- methane combined production from biodegradable solid wastes. Energy, 37 (1), 94-102.
Li, Y., Liu, H., Zhang, O. (2001). High-pressure compaction of municipal solid waste to form densified fuel. Fuel Processing Technology, 74 (2), 81-91.
Liu, D., Min, B. & Angelidaki. I. (2008). Biohydrogen production from household solid waste (HSW) at extreme-thermophilic temperature (70°C) – Influence of pH and acetate concentration. International Journal of Hydrogen Energy, 33 (23), 6985-6992.
Liu, X., Gao, X., Wang, W., Zheng, L., Zhou, Y. & Sun, Y. (2012). Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction. Renewable Energy, 44, 463-468.
Muhammad, N., Siddiquee, & Rohani. S. (2011). Lipid extraction and biodiesel production from municipal sewage sludges: A review. Renewable and Sustainable Energy Reviews, 15 (2), 1067-1072.
Pinacho, A., García-Encina, P.A., Sancho, P., Ramos, P. & Márquez, M.C. (2006). Study of drying systems for the utilization of biodegradable municipal solid wastes as animal feed. Waste Management, 26(5), 495-503.
Roca-Pérez, L., Martínez, C., Marcilla, P. & Boluda, R. (2009). Composting rice straw with sewage sludge and compost effects on the soil–plant system. Chemosphere, 75(6), 781-787.
Sancho, P., Pinacho, A., Ramos, P. & Tejedor, C. (2004). Microbiological characterization of food residues for animal feeding Waste Management, 24(9), 919-926.
Singh, S., Amar, K., Mohanty, Sugie, T., Takai, Y. & Hamada, H. (2008). Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Composites Part A: Applied Science and Manufacturing, 39(5), 875-886.
Sivapalan, K., Muhd Noor, M.Y., Abd. Halim, S., & Rakmi, A.R. (2002). Comprehensive characteristics of the municipal solid waste generated in Kuala Lumpur. Proceedings of the Regional Symposium on Environmental and Natural Resources, 1, 359-368.
Ståhl, M., Berghel, J. (2011). Energy efficient pilot-scale production of wood fuel pellets made from a raw material mix including sawdust and rapeseed cake. Biomass and Bioenergy, 35 (12) 4849-4854.
Sulaiman, A., Tabatabaei, M., Hassan, M.A. & Shirai, Y. (2009a). The Effect of Higher Sludge Recycling Rate on Anaerobic Treatment of Palm Oil Mill Effluent in a Semi-Commercial Closed Digester for Renewable Energy. American Journal of Biochemistry and Biotechnology, 5(1): 1-6.
Sulaiman, A., Hassan, M.A., Shirai, Y., Abd-Aziz, S., Tabatabaei, M., Busu, Z. & Yacob, S. (2009b). The Effect of Mixing on Methane Production in a Semi-commercial Closed Digester Tank Treating Palm Oil Mill Effluent. Australian Journal of Basic and Applied Sciences, 3(3): 1577-1583.
Sulaiman, A., Tabatabaei, M., Mohd-Yusof, M.Z., Ibrahim, M.F., Hassan, M.A. & Shirai. Y. (2010). Accelerated start-up of a semi-commercial digester tank treating palm oil mill effluent with sludge seeding for methane production. World Applied Sciences Journal 8 (2): 247-258.
Suthar, S. (2009). Vermicomposting of vegetable-market solid waste using Eisenia fetida: Impact of bulking material on earthworm growth and decomposition rate. Ecological Engineering, 35 (5), 914-920.
Suthar, S. (2010). Recycling of agro-industrial sludge through vermitechnology. Ecological Engineering, 36(8), 1028-1036.
Tabatabaei, M., Abdul-Rahim, R., Abdullah, N., Wright, A.D.G., Shirai, Y., Sakai, K., Sulaiman, A. & Hassan, M.A. (2010). Review: Importance of the methanogenic archea populations in anaerobic wastewater treatments. Process Biochemistry, 45(8) 1214-1225.
Takara, D., Khanal, S.K., 2011. Green processing of tropical banagrass into biofuel and biobased products: A innovative biorefinery approach. Bioresource Technology 102, 1587-1592.
Tan, T., Shang, F., Zhang, X., 2010. Current development of biorefinery in China. Biotechnology Advances, 28, 543-555.
Taylor, G., 2008. Biofuels and biorefinery concept. Energy Policy, 36, 4406-4409.
Wu, C.S. (2012). Characterization and biodegradability of polyester bioplastic-based green renewable composites from agricultural residues. Polymer Degradation and Stability, 97(1), 64-71.
Yu, J. (2001). Production of PHA from starchy wastewater via organic acids. Journal of Biotechnology, 86(30), 105-112.