Debris flows: Experiments and modelling

Comptes Rendus Physique - Tập 16 - Trang 86-96 - 2015
Barbara Turnbull1, Elisabeth T. Bowman2, Jim N. McElwaine3
1Fluid & Particle Processes Group, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
2Dept. Civil & Structural Engineering, University of Sheffield, Sheffield, S1 3JD, UK
3Department of Earth Sciences, Durham University, Durham, DH1 3LE, UK

Tài liệu tham khảo

Huggel, 2005, The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery, Nat. Hazards Earth Syst. Sci., 5, 173, 10.5194/nhess-5-173-2005 Evans, 2009, A re-examination of the mechanism and human impact of catastrophic mass flows originating on Nevado Huascarán, Cordillera Blanca, Peru in 1962 and 1970, Eng. Geol., 108, 96, 10.1016/j.enggeo.2009.06.020 Vallance, 2005, Volcanic debris flows, 247 Takahashi, 1981, Debris flow, Annu. Rev. Fluid Mech., 13, 57, 10.1146/annurev.fl.13.010181.000421 Iverson, 2003, The debris-flow rheology myth, vol. 1, 303 Kowalski, 2013, Shallow two-component gravity-driven flows with vertical variation, J. Fluid Mech., 714, 434, 10.1017/jfm.2012.489 Pudasaini, 2011, Some exact solutions for debris and avalanche flows, Phys. Fluids, 23, 043301, 10.1063/1.3570532 Christen, 2010, RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain, Cold Reg. Sci. Technol., 63, 1, 10.1016/j.coldregions.2010.04.005 Berzi, 2008, A theoretical analysis of free-surface flows of saturated granular–liquid mixtures, J. Fluid Mech., 608, 393, 10.1017/S0022112008002401 Iverson, 2001, Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory, J. Geophys. Res., Solid Earth, 106, 537, 10.1029/2000JB900329 McArdell, 2007, Field observations of basal forces and fluid pore pressure in a debris flow, Geophys. Res. Lett., 34, 10.1029/2006GL029183 Berzi, 2010, Debris flows: recent advances in experiments and modeling, Adv. Geophys., 52, 103, 10.1016/S0065-2687(10)52002-8 2009, J. Non-Newton. Fluid Mech., 158, 1, 10.1016/j.jnnfm.2009.01.003 Kaitna, 2007, Experimental study on rheologic behaviour of debris flow material, Acta Geotech., 2, 71, 10.1007/s11440-007-0026-z Johnson, 2003, Grain-size segregation and levee formation in geophysical mass flows, J. Geophys. Res., Earth Surf., 117, 10.1029/2011JF002185 Iverson, 1997, The physics of debris flows, Rev. Geophys., 35, 245, 10.1029/97RG00426 Kailey, 2013 Fannin, 2001, An empirical-statistical model for debris flow travel distance, Can. Geotech. J., 38, 982, 10.1139/t01-030 Paleo Cageao, 2014 Larcher, 2007, Set of measurement data from flume experiments on steady uniform debris flows, J. Hydraul. Res., 45, 59, 10.1080/00221686.2007.9521833 Iverson, 2014, Debris flows: behaviour and hazard assessment, Geol. Today, 30, 15, 10.1111/gto.12037 Bryant, 2005 Simpson, 1999 Campbell, 1989, Self-lubrication for long runout landslides, J. Geol., 97, 653, 10.1086/629350 Bolton, 1986, The strength and dilatancy of sands, Géotechnique, 36, 65, 10.1680/geot.1986.36.1.65 Garnier, 2007, Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling, Int. J. Phys. Model. Geotech., 7, 1, 10.1680/ijpmg.2007.070301 Chen, 2006, Erosional effects on runout of fast landslides, debris flows, Géotechnique, 56, 305, 10.1680/geot.2006.56.5.305 Hutchinson, 1971, Undrained loading, a fundamental mechanism of mudflows and other mass movements, Géotechnique, 21, 353, 10.1680/geot.1971.21.4.353 Bowman, 2012, Physical models of rock avalanche spreading behaviour with dynamic fragmentation, Can. Geotech. J., 49, 460, 10.1139/t2012-007 Bowman, 2010, Experimental modelling of debris flow behaviour using a geotechnical centrifuge, Can. Geotech. J., 47, 742, 10.1139/T09-141 Taylor, 1995, Centrifuges in modelling: principles and scale effects, 19 Kailey, 2011, Modelling debris flow processes with a geotechnical centrifuge, Ital. J. Eng. Geol. Environ., 13, 339 Gue, 2010, Centrifuge modelling of submarine landslide flows, 1113 Milne, 2012, Centrifuge modelling of hillslope debris flow initiation, Catena, 92, 162, 10.1016/j.catena.2011.12.001 Steedman, 1995, Dynamics, 168 Davies, 1990, Debris-flow surges—experimental simulation, J. Hydrol. (NZ), 29, 18 Armanini, 2005, Rheological stratification in experimental free-surface flows of granular–liquid mixtures, J. Fluid Mech., 532, 269, 10.1017/S0022112005004283 Yohannes, 2003, Boundary stresses due to impacts from dry granular flows, J. Geophys. Res., Earth Surf., 117, 10.1029/2011JF002150 Hsu, 2003, Experimental study of bedrock erosion by granular flows, J. Geophys. Res. Earth Surf., 113 Stock, 2005, Field measurements of incision rates following bedrock exposure: implications for process controls on the long profiles of valleys cut by rivers and debris flows, Geol. Soc. Am. Bull., 117, 174, 10.1130/B25560.1 Dalziel, 2002 O. Hungr, A model for the runout analysis of rapid flow slides, debris flows, and avalanches, Can. Geotech. J., http://dx.doi.org/10.1139/t95-063. Hungr, 2008, Numerical modelling of the dynamics of debris flows and rock avalanches, Geomech. Tunn., 1, 112, 10.1002/geot.200800010 Iverson, 2014, A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis, Proc. R. Soc., Math. Phys. Eng. Sci., 470, 20130819, 10.1098/rspa.2013.0819 George, 2014, A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II. Numerical predictions and experimental tests, Proc. R. Soc., Math. Phys. Eng. Sci., 470, 20130820, 10.1098/rspa.2013.0820 Berzi, 2009, Steady inclined flows of granular-fluid mixtures, J. Fluid Mech., 641, 359, 10.1017/S0022112009991510