Continued decrease of open surface water body area in Oklahoma during 1984–2015

Science of The Total Environment - Tập 595 - Trang 451-460 - 2017
Zhenhua Zou1, Jinwei Dong2, Michael A. Menarguez1,3, Xiangming Xiao1,4, Yuanwei Qin1, Russell B. Doughty1, Katherine V. Hooker5, K. David Hambright5
1Department of Microbiology and Plant Biology, Center for Spatial Analysis, University of Oklahoma, Norman, OK, 73019, USA
2Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
3LinkedIn, LLC, San Francisco, CA 94105, USA
4Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, 200433, China
5Plankton Ecology and Limnology Laboratory, Department of Biology, University of Oklahoma, Norman, OK 73019, USA

Tài liệu tham khảo

Aherne, 2006, Climate variability and forecasting surface water recovery from acidification: modelling drought-induced sulphate release from wetlands, Sci. Total Environ., 365, 186, 10.1016/j.scitotenv.2006.02.041 Alsdorf, 2007, Measuring surface water from space, Rev. Geophys., 45, 1, 10.1029/2006RG000197 Argonne National Laboratory, 2012 Atkinson, 2014, Species and function lost: role of drought in structuring stream communities, Biol. Conserv., 176, 30, 10.1016/j.biocon.2014.04.029 Bates, 2008 Bhagat, 2011, Use of Landsat ETM plus data for delineation of water bodies in hilly zones, J. Hydroinf., 13, 661, 10.2166/hydro.2010.018 Boland, 1976 Brown, 2006, Water and economic development: the role of variability and a framework for resilience, Nat. Res. Forum, 30, 306, 10.1111/j.1477-8947.2006.00118.x Campfield, 2013 Crist, 1985, A TM tasseled cap equivalent transformation for reflectance factor data, Remote Sens. Environ., 17, 301, 10.1016/0034-4257(85)90102-6 Department of the Interior U.S. Geological Survey, 2012 Dong, 2015, Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms, Remote Sens. Environ., 160, 99, 10.1016/j.rse.2015.01.004 Du, 2012, Estimating surface water area changes using time-series Landsat data in the Qingjiang River Basin, China, J. Appl. Remote. Sens., 6, 1, 10.1117/1.JRS.6.063609 Feng, 2011, Satellite observations make it possible to estimate Poyang Lake's water budget, Environ. Res. Lett., 6, 1, 10.1088/1748-9326/6/4/044023 Feng, 2016, A global, high-resolution (30-m) inland water body dataset for 2000: first results of a topographic-spectral classification algorithm, Int. J. Digital Earth, 9, 113, 10.1080/17538947.2015.1026420 Ferguson, 2012, Human impacts on terrestrial hydrology: climate change versus pumping and irrigation, Environ. Res. Lett., 7, 10.1088/1748-9326/7/4/044022 Feyisa, 2014, Automated water extraction index: a new technique for surface water mapping using Landsat imagery, Remote Sens. Environ., 140, 23, 10.1016/j.rse.2013.08.029 Fisher, 2016, Comparing Landsat water index methods for automated water classification in eastern Australia, Remote Sens. Environ., 175, 167, 10.1016/j.rse.2015.12.055 Fry, 2011, Completion of the 2006 national land cover database for the conterminous United States, Photogramm. Eng. Remote. Sens., 77, 858 Gibson, 1981 Gond, 2004, Monitoring and mapping of waters and wetlands in arid regions using the SPOT-4 VEGETATION imaging system, Int. J. Remote Sens., 25, 987, 10.1080/0143116031000139908 Google Earth Engine, 2017 Hall, 2014, Water security. Coping with the curse of freshwater variability, Science, 346, 429, 10.1126/science.1257890 Hoerling, 2014, Causes and predictability of the 2012 Great Plains Drought, Bull. Am. Meteorol. Soc., 95, 269, 10.1175/BAMS-D-13-00055.1 Homer, 2004, Development of a 2001 National Land-Cover Database for the United States, Photogramm. Eng. Remote. Sens., 70, 829, 10.14358/PERS.70.7.829 Homer, 2007, Completion of the 2001 National Land Cover Database for the conterminous United States, Photogramm. Eng. Remote. Sens., 73, 337 Homer, 2015, Completion of the 2011 National Land Cover Database for the conterminous United States—representing a decade of land cover change information, Photogramm. Eng. Remote. Sens., 81, 345 Hui, 2008, Modelling spatial-temporal change of Poyang Lake using multitemporal Landsat imagery, Int. J. Remote Sens., 29, 5767, 10.1080/01431160802060912 Ji, 2009, Analysis of dynamic thresholds for the normalized difference water index, Photogramm. Eng. Remote. Sens., 75, 1307, 10.14358/PERS.75.11.1307 Johnson, 2008 Kogan, 2015, 2006–2015 mega-drought in the western USA and its monitoring from space data, Geomat. Nat. Haz. Risk, 6, 651, 10.1080/19475705.2015.1079265 Lehner, 2004, Development and validation of a global database of lakes, reservoirs and wetlands, J. Hydrol., 296, 1, 10.1016/j.jhydrol.2004.03.028 Li, 2013, A comparison of land surface water mapping using the normalized difference water index from TM, ETM plus and ALI, Remote Sens., 5, 5530, 10.3390/rs5115530 Lin, 2013, Is Oklahoma getting drier?, J. Quant. Spectrosc. Radiat. Transf., 122, 208, 10.1016/j.jqsrt.2012.07.024 Liu, 2013, Disappearing Lakes in semiarid northern China: drivers and environmental impact, Environ. Sci. Technol., 47, 12107, 10.1021/es305298q McFeeters, 1996, The use of the normalized difference water index (NDWI) in the delineation of open water features, Int. J. Remote Sens., 17, 1425, 10.1080/01431169608948714 McPherson, 2007, Statewide monitoring of the mesoscale environment: a technical update on the Oklahoma Mesonet, J. Atmos. Ocean. Technol., 24, 301, 10.1175/JTECH1976.1 Mercier, 2002, Interannual lake level fluctuations (1993–1999) in Africa from Topex/Poseidon: connections with ocean-atmosphere interactions over the Indian Ocean, Glob. Planet. Chang., 32, 141, 10.1016/S0921-8181(01)00139-4 Mueller, 2016, Water observations from space: mapping surface water from 25years of Landsat imagery across Australia, Remote Sens. Environ., 174, 341, 10.1016/j.rse.2015.11.003 Necsoiu, 2013, Multi-temporal image analysis of historical aerial photographs and recent satellite imagery reveals evolution of water body surface area and polygonal terrain morphology in Kobuk Valley National Park, Alaska, Environ. Res. Lett., 8, 10.1088/1748-9326/8/2/025007 Ogilvie, 2015, Decadal monitoring of the Niger Inner Delta flood dynamics using MODIS optical data, J. Hydrol., 523, 368, 10.1016/j.jhydrol.2015.01.036 Oklahoma Climatological Survey, 2016 Oklahoma Water Resources Board, 2011, 1 OWRB, 2015 Pekel, 2016, High-resolution mapping of global surface water and its long-term changes, Nature, 540, 418, 10.1038/nature20584 Rouse, 1974, Monitoring vegetation systems in the Great Plains with ERTS, 351, 309 Santoro, 2015, Strengths and weaknesses of multi-year Envisat ASAR backscatter measurements to map permanent open water bodies at global scale, Remote Sens. Environ., 171, 185, 10.1016/j.rse.2015.10.031 Shafer, 2014, Great Plains, 441 Shine, 2007, Remote sensing and GIS for ephemeral wetland monitoring and sustainability in southern Mauritania, 269 Tao, 2015, Rapid loss of lakes on the Mongolian Plateau, Proc. Natl. Acad. Sci. U. S. A., 112, 2281, 10.1073/pnas.1411748112 Tulbure, 2013, Spatiotemporal dynamic of surface water bodies using Landsat time-series data from 1999 to 2011, ISPRS J. Photogramm. Remote Sens., 79, 44, 10.1016/j.isprsjprs.2013.01.010 Tulbure, 2014, Spatiotemporal dynamics of surface water networks across a global biodiversity hotspot-implications for conservation, Environ. Res. Lett., 9, 10.1088/1748-9326/9/11/114012 Tulbure, 2016, Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region, Remote Sens. Environ., 178, 142, 10.1016/j.rse.2016.02.034 U.S. Census Bureau, 2010 U.S. Geological Survey, 2010, Water use in the United States USACE, 2017 USDA-NASS, 2014, 2012 Census of Agriculture, 340 Vaughn, 2015, Drought-induced changes in flow regimes lead to long-term losses in mussel-provided ecosystem services, Ecol. Evol., 5, 1291, 10.1002/ece3.1442 Verpoorter, 2012, Automated mapping of water bodies using Landsat multispectral data, Limnol. Oceanogr. Methods, 10, 1037, 10.4319/lom.2012.10.1037 Verpoorter, 2014, A global inventory of lakes based on high-resolution satellite imagery, Geophys. Res. Lett., 41, 6396, 10.1002/2014GL060641 Vogelmann, 2001, Completion of the 1990s National Land Cover Data Set for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources, Photogramm. Eng. Remote. Sens., 67 Woods, 2005, Ecoregions of Oklahoma, map scale 1:1,250,000 Xiao, 2002, Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data, Int. J. Remote Sens., 23, 3009, 10.1080/01431160110107734 Xiao, 2006, Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images, Remote Sens. Environ., 100, 95, 10.1016/j.rse.2005.10.004 Xiao, 2005, Mapping paddy rice agriculture in southern China using multi-temporal MODIS images, Remote Sens. Environ., 95, 480, 10.1016/j.rse.2004.12.009 Xu, 2006, Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery, Int. J. Remote Sens., 27, 3025, 10.1080/01431160600589179