Optical temperature sensing of up-conversion luminescent materials: Fundamentals and progress

Journal of Alloys and Compounds - Tập 817 - Trang 152691 - 2020
Yan Zhao1, Xusheng Wang1, Ying Zhang2, Yanxia Li1, Xi Yao1
1Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, 4800 Cao’an Road, Shanghai 201804, China
2State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China

Tài liệu tham khảo

Chen, 2017, Eu2+/Eu3+ dual-emitting glass ceramic for self-calibrated optical thermometry, Sens. Actuators B Chem., 246, 756, 10.1016/j.snb.2017.02.159 Chen, 2017, Ln3+-Sensitized Mn4+ near-infrared upconverting luminescence and dual-modal temperature sensing, J. Mater. Chem. C, 5, 9619, 10.1039/C7TC02182H Chen, 2016, EuF3/Ga2O3 dual-phase nanostructural glass ceramics with Eu2+/Cr3+ dual-activator luminescence for self-calibrated optical thermometry, J. Phys. Chem. C, 120, 21858, 10.1021/acs.jpcc.6b08271 Zhong, 2018, A review on nanostructured glass ceramics for promising application in optical thermometry, J. Alloy. Comp., 763, 34, 10.1016/j.jallcom.2018.05.348 Li, 2016, The emission rise time of BaY2ZnO5:Eu3+ for non-contact luminescence thermometry, J. Alloy. Comp., 657, 353, 10.1016/j.jallcom.2015.10.101 Xu, 2017, Optical temperature sensing in Er3+-Yb3+ codoped CaWO4 and the laser induced heating effect on the luminescence intensity saturation, J. Alloy. Comp., 726, 547, 10.1016/j.jallcom.2017.08.007 Xu, 2019, Enhanced NIR-NIR luminescence from CaWO4:Nd3+/Yb3+ phosphors by Li+ codoping for thermometry and optical heating, J. Lumin., 208, 415, 10.1016/j.jlumin.2019.01.005 Zhang, 2019, Fabrication, photothermal conversion and temperature sensing of novel nanoplatform-hybrid nanocomposite of NaYF4:Er3+,Yb3+@NaYF4 and Au nanorods for photothermal therapy, Mater. Res. Bull., 114, 148, 10.1016/j.materresbull.2019.03.003 Wang, 2015, Optical temperature sensing of rare-earth ion doped phosphors, RSC Adv., 5, 86219, 10.1039/C5RA16986K Sidiroglou, 2003, Effects of high-temperature heat treatment on Nd3+-doped optical fibers for use in fluorescence intensity ratio based temperature sensing, Rev. Sci. Instrum., 74, 3524, 10.1063/1.1578706 Chen, 2016, Highly sensitive dual-phase nanoglass-ceramics self-calibrated optical thermometer, Anal. Chem., 88, 4099, 10.1021/acs.analchem.6b00434 Runowski, 2018, Multifunctional optical sensors for nanomanometry and nanothermometry: high-pressure and high-temperature upconversion luminescence of lanthanide-doped phosphates--LaPO4/YPO4:Yb3+-Tm3+, ACS Appl. Mater. Interfaces, 10, 17269, 10.1021/acsami.8b02853 Zhu, 2018, Upconversion nanocomposite for programming combination cancer therapy by precise control of microscopic temperature, Nat. Commun., 9, 2176, 10.1038/s41467-018-04571-4 Duan, 2018, Recent progress in upconversion luminescence nanomaterials for biomedical applications, J. Mater. Chem. B, 6, 192, 10.1039/C7TB02527K Dong, 2015, Energy transfer in lanthanide upconversion studies for extended optical applications, Chem. Soc. Rev., 44, 1608, 10.1039/C4CS00188E Wang, 2011, Tuning upconversion through energy migration in core-shell nanoparticles, Nat. Mater., 10, 968, 10.1038/nmat3149 Carnall, 1989, A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3, J. Chem. Phys., 90, 3443, 10.1063/1.455853 Sakakibara, 1999, Whole field measurement of temperature in water using two-color laser induced fluorescence, Exp. Fluid, 26, 7, 10.1007/s003480050260 Lin, 2016, Relationship between rare earth fluorescence characteristic and temperature, Acta Photonica Sin., 45, 127 Zhou, 2017, Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles, Sens. Actuators B Chem., 246, 352, 10.1016/j.snb.2017.02.070 Chambers, 2009, Doped oxides for high-temperature luminescence and lifetime thermometry, Annu. Rev. Mater. Res., 39, 325, 10.1146/annurev-matsci-112408-125237 Omrane, 2002, Two-dimensional surface temperature measurements of burning materials, Proc. Combust. Inst., 29, 2653, 10.1016/S1540-7489(02)80323-6 Kalytchuk, 2017, Carbon dot nanothermometry: intracellular photoluminescence lifetime thermal sensing, ACS Nano, 11, 1432, 10.1021/acsnano.6b06670 Chen, 2015, Cr3+-doped gallium-based transparent bulk glass ceramics for optical temperature sensing, J. Eur. Ceram. Soc., 35, 4211, 10.1016/j.jeurceramsoc.2015.08.005 Uchiyama, 2003, Fiber-optic thermometer using Cr-doped YAlO3 sensor head, Rev. Sci. Instrum., 74, 3883, 10.1063/1.1589582 Kitaoka, 2013, Excited Cr impurity states in Al2O3 from constraint density functional theory, Phys. Rev. B, 87, 205113, 10.1103/PhysRevB.87.205113 Brübach, 2013, On surface temperature measurements with thermographic phosphors: a review, Prog. Energy Combust. Sci., 39, 37, 10.1016/j.pecs.2012.06.001 Eckert, 2010, Sol-gel deposition of multiply doped thermographic phosphor coatings Al2O3:(Cr3+,M3+)(M = Dy,Tm) for wide range surface temperature measurement application, Prog. Org. Coat., 68, 126, 10.1016/j.porgcoat.2009.08.021 Brübach, 2011, A survey of phosphors novel for thermography, J. Lumin., 131, 559, 10.1016/j.jlumin.2010.10.017 Kissel, 2013, Phosphor thermometry: on the synthesis and characterisation of Y3Al5O12:Eu (YAG:Eu) and YAlO3:Eu (YAP:Eu), Mater. Chem. Phys., 140, 435, 10.1016/j.matchemphys.2013.02.065 Sakirzanovas, 2012, Concentration influence on temperature-dependent luminescence properties of samarium substituted strontium tetraborate, J. Lumin., 132, 141, 10.1016/j.jlumin.2011.08.011 Pal, 2013, Effect of temperature and pressure on emission lifetime of Sm2+ ion doped in MFX (M = Sr, Ba; X = Br, I) crystals, J. Lumin., 142, 66, 10.1016/j.jlumin.2013.03.011 Zhang, 2017, Luminescence and energy transfer of dual-emitting solid solution phosphors (Ca,Sr)10Li(PO4)7:Ce3+,Mn2+ for ratiometric temperature sensing, Ind. Eng. Chem. Res., 56, 890, 10.1021/acs.iecr.6b03748 Zhang, 2018, Upconversion luminescence of Ba9Y2Si6O24:Yb3+-Ln3+ (Ln = Er, Ho, and Tm) phosphors for temperature sensing, Mater. Chem. Phys., 206, 40, 10.1016/j.matchemphys.2017.12.007 Cai, 2009, Point temperature sensor based on green decay in an Er:ZBLALiP microsphere, J. Lumin., 129, 1994, 10.1016/j.jlumin.2009.04.039 Okabe, 2012, Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy, Nat. Commun., 3, 705, 10.1038/ncomms1714 Yu, 2012, Temperature-dependent fluorescence in carbon dots, J. Phys. Chem. C, 116, 25552, 10.1021/jp307308z Qiao, 2018, Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence, J. Am. Chem. Soc., 140, 9730, 10.1021/jacs.8b06021 Bu, 2017, Temperature dependent photoluminescence of Eu3+-doped Ca7V4O17, J. Lumin., 190, 50, 10.1016/j.jlumin.2017.05.015 Jia, 2018, Investigation on two forms of temperature-sensing parameters for fluorescence intensity ratio thermometry based on thermal coupled theory, Inorg. Chem., 57, 1213, 10.1021/acs.inorgchem.7b02634 Green, 2018, Optical temperature sensing with infrared excited upconversion nanoparticles, Front. Chem., 6, 10.3389/fchem.2018.00416 Zhao, 2019, Optical temperature sensing properties of a phosphor mixture of Sr2Mg3P4O15:Eu2+ and SrB4O7:Sm2+, Mater. Res. Bull., 109, 103, 10.1016/j.materresbull.2018.09.032 Lei, 2019, Ultrahigh-sensitive optical temperature sensing in Pr3+:Y2Ti2O7 based on diverse thermal response from trap emission and Pr3+ red luminescence, J. Lumin., 205, 440, 10.1016/j.jlumin.2018.09.029 Liang, 2016, Noncontact thermometry based on downconversion luminescence from Eu3+ doped LiNbO3 single crystal, Sens. Actuators A Phys., 238, 215, 10.1016/j.sna.2015.12.018 Chai, 2016, Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er3+/Yb3+ co-doped ZnWO4, Opt. Express, 24, 22438, 10.1364/OE.24.022438 Zhao, 2019, Isostructural Tb3+/Eu3+ Co-doped metal-organic framework based on pyridine-containing dicarboxylate ligands for ratiometric luminescence temperature sensing, Inorg. Chem., 58, 2637, 10.1021/acs.inorgchem.8b03225 Xu, 2013, Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4, Sens. Actuators B Chem., 188, 1096, 10.1016/j.snb.2013.07.094 Du, 2015, Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics, J. Alloy. Comp., 632, 73, 10.1016/j.jallcom.2015.01.130 Sun, 2017, High sensitivity thermometry and optical heating Bi-function of Yb3+/Tm3+ Co-doped BaGd2ZnO5 phosphors, Curr. Appl. Phys., 17, 255, 10.1016/j.cap.2016.12.002 Shi, 2019, Photoluminescence and impedance properties of rare-earth doped (K0.5Na0.5)NbO3 lead-free ceramics, J. Mater. Sci. Mater. Electron., 30, 9, 10.1007/s10854-018-0328-y Wang, 2017, Controlled synthesis, multicolor luminescence, and optical thermometer of bifunctional NaYbF4:Nd3+@NaYF4:Yb3+ active-core/active-shell colloidal nanoparticles, J. Alloy. Comp., 691, 530, 10.1016/j.jallcom.2016.08.262 Chen, 2010, Color-tunable luminescence of Eu3+ in LaF3 embedded nanocomposite for light emitting diode, Acta Mater., 58, 3035, 10.1016/j.actamat.2010.01.035 Park, 2012, Melilite-structure CaYAl3O7:Eu3+ phosphor: structural and optical characteristics for near-UV LED-based white light, J. Phys. Chem. C, 116, 26850, 10.1021/jp307192y Zhang, 2015, Photoluminescence properties of heavily Eu3+-doped BaCa2In6O12 phosphor for white-light-emitting diodes, J. Am. Ceram. Soc., 98, 1567, 10.1111/jace.13511 Du, 2017, Rare-earth doped (K0.5Na0.5)NbO3 multifunctional ceramics, J. Mater. Sci. Mater. Electron., 28, 5288, 10.1007/s10854-016-6186-6 Meijer, 2010, Downconversion for solar cells in YF3:Nd3+,Yb3+, Phys. Rev. B, 81, 035107, 10.1103/PhysRevB.81.035107 Senapati, 2017, Ultrahigh-sensitive optical temperature sensing based on quasi-thermalized green emissions from Er:ZnO, Phys. Chem. Chem. Phys., 19, 2346, 10.1039/C6CP06608A León-Luis, 2013, Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors, Sens. Actuators B Chem., 176, 1167, 10.1016/j.snb.2012.09.067 Vijaya, 2013, Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors, Sens. Actuators B Chem., 186, 156, 10.1016/j.snb.2013.05.081 León-Luis, 2012, Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors, Sens. Actuators B Chem., 174, 176, 10.1016/j.snb.2012.08.019 León-Luis, 2011, Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass, Sens. Actuators B Chem., 158, 208, 10.1016/j.snb.2011.06.005 Jiang, 2014, Neodymium doped lanthanum oxysulfide as optical temperature sensors, J. Lumin., 152, 156, 10.1016/j.jlumin.2013.10.027 Pérez-Rodríguez, 2014, Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique, Sens. Actuators B Chem., 195, 324, 10.1016/j.snb.2014.01.037 Rakov, 2017, Near-infrared emission and optical temperature sensing performance of Nd3+:SrF2 crystal powder prepared by combustion synthesis, J. Appl. Phys., 121, 113103, 10.1063/1.4978380 Yao, 2016, Energy transfer, tunable emission and optical thermometry in Tb3+/Eu3+ co-doped transparent NaCaPO4 glass ceramics, Ceram. Int., 42, 13086, 10.1016/j.ceramint.2016.05.092 Zhou, 2018, Color tunable emission and low-temperature luminescent sensing of europium and terbium carboxylic acid complexes, Inorg. Chim. Acta, 469, 576, 10.1016/j.ica.2017.10.014 Chen, 2018, Down-conversion luminescence and optical thermometric performance of Tb3+/Eu3+ doped phosphate glass, J. Non-Cryst. Solids, 484, 111, 10.1016/j.jnoncrysol.2018.01.027 Loos, 2017, Temperature-dependent luminescence and energy transfer properties of Tb3+ and Eu3+ doped barium borate glasses, J. Lumin., 181, 31, 10.1016/j.jlumin.2016.08.066 Xia, 2012, Near-infrared luminescence and energy transfer studies of LaOBr:Nd3+/Yb3+, Opt. Express, 20, A722, 10.1364/OE.20.00A722 Gai, 2013, Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications, Chem. Rev., 114, 2343, 10.1021/cr4001594 Wang, 2013, Luminescent probes and sensors for temperature, Chem. Soc. Rev., 42, 7834, 10.1039/c3cs60102a Bünzli, 2017, Rising stars in science and technology: luminescent lanthanide materials, Eur. J. Inorg. Chem., 2017, 5058, 10.1002/ejic.201701201 Li, 2009, Dual-mode luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals, Adv. Mater., 21, 1945, 10.1002/adma.200803228 Liu, 2011, Designing lanthanide-doped nanocrystals with both up- and down-conversion luminescence for anti-counterfeiting, Nanoscale, 3, 4804, 10.1039/c1nr10752f Wang, 2011, Dual-mode luminescence from lanthanide tri-doped NaYF4 nanocrystals, Mater. Lett., 65, 504, 10.1016/j.matlet.2010.10.080 Verma, 2012, Dual mode green fluorescence from Tb3+:Ca12Al14O33 and its applicability as delayed fluorescence, Mater. Res. Bull., 47, 3726, 10.1016/j.materresbull.2012.06.033 Grzyb, 2013, The effects of down-and up-conversion on dual-mode green luminescence from Yb3+-and Tb3+-doped LaPO4 nanocrystals, J. Mater. Chem. C, 1, 5410, 10.1039/c3tc31100g Singh, 2013, Probing a highly efficient dual mode: down-upconversion luminescence and temperature sensing performance of rare-earth oxide phosphors, Dalton Trans., 42, 1065, 10.1039/C2DT32054A Li, 2013, Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+, Dalton Trans., 42, 7971, 10.1039/c3dt32964j Chai, 2015, Dual-mode luminescence, temperature sensing and dielectric performance in Pr3+/Er3+ Co-doped BaTiO3-CaTiO3 diphase ferroelectric oxides, Ferroelectrics, 488, 54, 10.1080/00150193.2015.1072024 Chai, 2015, Dual-mode photoluminescence, temperature sensing and enhanced ferroelectric properties in Er-doped (Ba0.4Ca0.6)TiO3 multifunctional diphase ceramics, Mat. Sci. Eng. B-Adv., 201, 23, 10.1016/j.mseb.2015.06.011 Chai, 2016, Bright dual-mode green emission and temperature sensing properties in Er3+/Yb3+ co-doped MgWO4 phosphor, RSC Adv., 6, 64072, 10.1039/C6RA09656E Chai, 2016, 1 Du, 2016, The dual-model up/down-conversion green luminescence of Gd6O5F8:Yb3+,Ho3+,Li+ and its application for temperature sensing, J. Mater. Chem. C, 4, 7148, 10.1039/C6TC01812B Zhou, 2019, Efficient solid-state and dual-mode photoluminescence of carbon-dots/NaLuF4 microcrystals for multifunctional applications, J. Alloy. Comp., 775, 457, 10.1016/j.jallcom.2018.10.125 Zhai, 2019, The impedance, dielectric and piezoelectric properties of Tb4O7 and Tm2O3 doped KNN ceramics, J. Mater. Sci.-Mater. El., 30, 4352, 10.1007/s10854-019-00748-9 Zhai, 2019, Temperature stability and electrical properties of Tm2O3 doped KNN-based ceramics, J. Mater. Sci. Mater. Electron., 1 Donner, 2012, Mapping intracellular temperature using green fluorescent protein, Nano Lett., 12, 2107, 10.1021/nl300389y Huang, 2019, Unraveling the electronic structures of neodymium in LiLuF4 nanocrystals for ratiometric temperature sensing, Adv. Sci., 6, 1802282, 10.1002/advs.201802282 Dawson, 2018, Excitation modulation of upconversion nanoparticles for switch-like control of ultraviolet luminescence, J. Am. Chem. Soc., 140, 5714, 10.1021/jacs.7b13677 Zhou, 2013, Upconversion luminescence of NaYF4:Yb3+,Er3+ for temperature sensing, Opt. Commun., 291, 138, 10.1016/j.optcom.2012.11.005 Zheng, 2013, Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals, J. Mater. Chem. C, 1, 5502, 10.1039/c3tc30763h Klier, 2015, Upconversion luminescence properties of NaYF4:Yb:Er nanoparticles codoped with Gd3+, J. Phys. Chem. C, 119, 3363, 10.1021/jp5103548 Chen, 2015, Bulk glass ceramics containing Yb3+/Er3+:β-NaGdF4 nanocrystals: phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior, J. Alloy. Comp., 638, 21, 10.1016/j.jallcom.2015.02.170 Su, 2016, Resonance energy transfer in upconversion nanoplatforms for selective biodetection, Accounts Chem. Res., 50, 32, 10.1021/acs.accounts.6b00382 Zhou, 2015, Controlling upconversion nanocrystals for emerging applications, Nat. Nanotechnol., 10, 924, 10.1038/nnano.2015.251 Suyver, 2005, Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion, Opt. Mater., 27, 1111, 10.1016/j.optmat.2004.10.021 Tripathi, 2007, Upconversion and temperature sensing behavior of Er3+ doped Bi2O3-Li2O-BaO-PbO tertiary glass, Opt. Mater., 30, 201, 10.1016/j.optmat.2006.09.021 Li, 2016, Broadband near-infrared photoluminescence and strong visible up-conversion emission in BaTiO3-(Na0.5Er0.5)TiO3 lead-free piezoelectric ceramics, Ferroelectrics, 490, 118, 10.1080/00150193.2015.1072685 Zheng, 2016, Temperature sensing based on up-conversion luminescence of (1-x)Na0.5Bi2.5Ta2O9+xNa0.5Er0.5TiO3 ceramics, J. Mater. Sci. Mater. Electron., 27, 7994, 10.1007/s10854-016-4794-9 Zhang, 2017, Enhanced electrical properties, color-tunable up-conversion luminescence, and temperature sensing behaviour in Er-doped Bi3Ti1.5W0.5O9 multifunctional ferroelectric ceramics, J. Appl. Phys., 121, 124102, 10.1063/1.4979096 Zhang, 2018, Simultaneously excellent upconversion luminescence and temperature sensing properties in tungstate multiphase phosphors, J. Mater. Sci. Mater. Electron., 29, 19840, 10.1007/s10854-018-0112-z Zhang, 2018, Excellent up-conversion temperature sensing sensitivity and broad temperature range of Er-doped strontium tungstate multiphase phosphors, Opt. Mater. Express, 8, 12, 10.1364/OME.8.000012 Zhang, 2018, Enhanced up-conversion luminescence and excellent temperature sensing properties in Yb3+ sensitized Er3+-doped Bi3Ti1.5W0.5O9 multifunctional ferroelectric ceramics, J. Alloy. Comp., 735, 473, 10.1016/j.jallcom.2017.11.085 Zou, 2015, Optical thermometry based on the upconversion luminescence from Er doped Bi7Ti4TaO21 ferroelectric ceramics, J. Mater. Sci. Mater. Electron., 26, 6502, 10.1007/s10854-015-3244-4 Zhang, 2019, xLiNbO3-(1-x)(K,Na)NbO3 ceramics: a new class of phosphors with tunable upconversion luminescence by external electric field and excellent optical temperature sensing property, J. Alloy. Comp., 770, 214, 10.1016/j.jallcom.2018.08.019 Cao, 2011, Optical temperature sensing behavior of enhanced green upconversion emissions from Er-Mo:Yb2Ti2O7 nanophosphor, Sens. Actuators B Chem., 159, 8, 10.1016/j.snb.2011.05.018 Wang, 2018, Modifying phase, shape and optical thermometry of NaGdF4:2% Er3+ phosphors through Ca2+ doping, Opt. Express, 26, 21950, 10.1364/OE.26.021950 Rai, 2016, Efficient color tunable ZnWO4:Er3+-Yb3+ phosphor for high temperature sensing, J. Disp. Technol., 12, 1472, 10.1109/JDT.2016.2602503 Zhang, 2016, Thermometry and up-conversion luminescence of Yb3+-Er3+ co-doped Na2Ln2Ti3O10 (Ln = Gd, La) phosphors, Phys. Chem. Chem. Phys., 18, 18828, 10.1039/C6CP02746F Wei, 2016, Upconversion of SrWO4: Er3+/Yb3+: improvement by Yb3+ codoping and temperature sensitivity for optical temperature sensors, Chem. Phys. Lett., 651, 46, 10.1016/j.cplett.2016.03.006 Wang, 2016, Up-conversion luminescence and optical temperature-sensing properties of Er3+-doped perovskite Na0.5Bi0.5TiO3 nanocrystals, J. Phys. Chem. Solids, 98, 28, 10.1016/j.jpcs.2016.06.002 Du, 2015, The simultaneous realization of high-and low-temperature thermometry in Er3+/Yb3+-codoped Y2O3 nanoparticles, Mater. Lett., 143, 209, 10.1016/j.matlet.2014.12.123 Zuo, 2015, The electrical, upconversion emission, and temperature sensing properties of Er3+/Yb3+-codoped Ba (Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ferroelectric ceramics, J. Alloy. Comp., 632, 711, 10.1016/j.jallcom.2015.01.296 Mukhopadhyay, 2017, 980 nm excited Er3+/Yb3+/Li+/Ba2+:NaZnPO4 upconverting phosphors in optical thermometry, J. Lumin., 187, 368, 10.1016/j.jlumin.2017.03.035 Cao, 2017, Wide-range thermometry based on green up-conversion luminescence of K3LuF6:Yb3+/Er3+ bulk oxyfluoride glass ceramics, J. Am. Ceram. Soc., 100, 2108, 10.1111/jace.14606 Soni, 2017, Thermal and pump power effect in SrMoO4:Er3+-Yb3+ phosphor for thermometry and optical heating, Chem. Phys. Lett., 667, 226, 10.1016/j.cplett.2016.12.002 Cao, 2017, Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7 nano-crystals in bulk glass ceramics, J. Alloy. Comp., 693, 326, 10.1016/j.jallcom.2016.09.163 Mahata, 2015, Incorporation of Zn2+ ions into BaTiO3:Er3+/Yb3+ nanophosphor: an effective way to enhance upconversion, defect luminescence and temperature sensing, Phys. Chem. Chem. Phys., 17, 20741, 10.1039/C5CP01874A Pandey, 2015, Upconversion based temperature sensing ability of Er3+-Yb3+ codoped SrWO4: an optical heating phosphor, Sens. Actuators B Chem., 209, 352, 10.1016/j.snb.2014.11.126 Du, 2015, Infrared-to-visible upconversion emission of Er3+/Yb3+-codoped SrMoO4 phosphors as wide-range temperature sensor, Curr. Appl. Phys., 15, 1576, 10.1016/j.cap.2015.09.013 Yang, 2015, Optical temperature sensing behavior of high-efficiency upconversion: Er3+-Yb3+ Co-doped NaY(MoO4)2 phosphor, J. Am. Ceram. Soc., 98, 2595, 10.1111/jace.13624 Soni, 2015, Optical investigation in shuttle like BaMoO4:Er3+-Yb3+ phosphor in display and temperature sensing, Sens. Actuators B Chem., 216, 64, 10.1016/j.snb.2015.04.017 He, 2015, Optical temperature sensing properties of Yb3+-Er3+ co-doped NaLnTiO4 (Ln = Gd, Y) up-conversion phosphors, RSC Adv., 5, 1385, 10.1039/C4RA11771A Du, 2015, Effect of molybdenum on upconversion emission and temperature sensing properties in Na0.5Bi0.5TiO3:Er/Yb ceramics, Ceram. Int., 41, 6710, 10.1016/j.ceramint.2015.01.113 Tiwari, 2015, Enhanced temperature sensing response of upconversion luminescence in ZnO-CaTiO3:Er3+/Yb3+ nano-composite phosphor, Spectrochim. Acta A, 150, 623, 10.1016/j.saa.2015.05.081 Liu, 2015, Investigation into the temperature sensing behavior of Yb3+ sensitized Er3+ doped Y2O3, YAG and LaAlO3 phosphors, RSC Adv., 5, 51820, 10.1039/C5RA05986K Li, 2015, Optical thermometry based on up-conversion luminescence behavior of Er3+-doped transparent Sr2YbF7 glass-ceramics, J. Am. Ceram. Soc., 98, 3824, 10.1111/jace.13804 Du, 2014, Upconversion emission in Er-doped and Er/Yb-codoped ferroelectric Na0.5Bi0.5TiO3 and its temperature sensing application, J. Appl. Phys., 116, 014102, 10.1063/1.4886575 Singh, 2014, Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions, Phys. Chem. Chem. Phys., 16, 22665, 10.1039/C4CP02949F Yang, 2014, Optical thermometry based on the upconversion fluorescence from Yb3+/Er3+ codoped La2O2S phosphor, Ceram. Int., 40, 9875, 10.1016/j.ceramint.2014.02.081 Gavrilović, 2014, Multifunctional Eu3+-and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method, Sci. Rep., 4, 4209, 10.1038/srep04209 Li, 2014, Green up-conversion luminescence of Yb3+-Er3+ co-doped CaLa2ZnO5 for optically temperature sensing, RSC Adv., 4, 6391, 10.1039/c3ra47264g Pandey, 2014, Enhanced upconversion and temperature sensing study of Er3+-Yb3+ codoped tungsten-tellurite glass, Sens. Actuators B Chem., 202, 1305, 10.1016/j.snb.2014.06.074 Wang, 2014, Optical temperature sensing of hexagonal Na0.82Ca0.08Er0.16Y0.853F4 phosphor, RSC Adv., 4, 24170, 10.1039/c4ra02779e Hui, 2014, A new multifunctional Aurivillius oxide Na0.5Er0.5Bi4Ti4O15: up-conversion luminescent, dielectric, and piezoelectric properties, Ceram. Int., 40, 12477, 10.1016/j.ceramint.2014.04.102 Du, 2014, Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic, Appl. Phys. Lett., 104, 152902, 10.1063/1.4871378 Tian, 2013, Intense red upconversion emission and temperature sensing in Er3+/Yb3+ co-doped Ba5Gd8Zn4O21 phosphor, Mater. Express, 3, 241, 10.1166/mex.2013.1121 Yang, 2013, Highly sensitive optical thermometry based on the upconversion fluorescence from Yb3+/Er3+ codoped La2(WO4)3:Yb3+,Er3+ phosphor//2013 International Conference on optical instruments and technology: optical sensors and applications, Int. Soc. Opt. Photon., 9044, 904408 Dong, 2012, Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides, Adv. Mater., 24, 1987, 10.1002/adma.201200431 Dong, 2012, Optical temperature sensing through extraordinary enhancement of green up-conversion emissions for Er-Yb-Mo: Al2O3, Sens. Actuators B Chem., 165, 34, 10.1016/j.snb.2012.01.068 Liu, 2011, Optical thermometry through green and red upconversion emissions in Er3+/Yb3+/Li+:ZrO2 nanocrystals, Opt. Commun., 284, 1876, 10.1016/j.optcom.2010.12.030 Rakov, 2012, Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders, Sens. Actuators B Chem., 164, 96, 10.1016/j.snb.2012.01.070 Lai, 2010, Optical transition and upconversion luminescence in Er3+ doped and Er3+-Yb3+ co-doped fluorophosphate glasses, Opt. Mater., 32, 1154, 10.1016/j.optmat.2010.03.023 Mondal, 2017, Influence of silica surface coating on optical properties of Er3+-Yb3+:YMoO4 upconverting nanoparticles, Chem. Eng. J., 327, 838, 10.1016/j.cej.2017.06.166 Zhang, 2019, Electronic structure, upconversion luminescence and optical temperature sensing behavior of Yb3+-Er3+/Ho3+ doped NaLaMgWO6, J. Alloy. Comp., 783, 84, 10.1016/j.jallcom.2018.12.281 Yao, 2019, Effect of Li co-doping with Er on up-conversion luminescence property and its temperature dependence of NaY(WO4)2, J. Phys. Chem. Solids, 126, 189, 10.1016/j.jpcs.2018.11.009 Xu, 2019, Enhanced up-conversion luminescence and optical temperature sensing in graphitic C3N4 quantum dots grafted with BaWO4:Yb3+,Er3+ phosphors, J. Mater. Chem. C, 7, 6112, 10.1039/C9TC01351B Wu, 2019, Optical temperature sensing properties of Er3+/Yb3+ co-doped LuVO4 up-conversion phosphors, Physica B, 561, 97, 10.1016/j.physb.2019.02.051 Pang, 2019, Calibration of optical temperature sensing of Ca1-xNaxMoO4:Yb3+,Er3+ with intense green up-conversion luminescence, J. Alloy. Comp., 771, 571, 10.1016/j.jallcom.2018.08.309 Liu, 2019, Dependence of upconversion emission and optical temperature sensing behavior on excitation power in Er3+/Yb3+ co-doped BaMoO4 phosphors, J. Lumin., 210, 119, 10.1016/j.jlumin.2019.01.065 He, 2019, The upconversion photoluminescence and temperature sensing abilities of Pb(Zn1/3Nb2/3)O3-9PbTiO3 crystals induced by Er3+/Yb3+ doping, J. Alloy. Comp., 782, 936, 10.1016/j.jallcom.2018.12.271 Liu, 2018, Color-tunable upconversion luminescence and multiple temperature sensing and optical heating properties of Ba3Y4O9:Er3+/Yb3+ phosphors, J. Phys. Chem. C, 122, 16289, 10.1021/acs.jpcc.8b04180 Cao, 2015, Multiple temperature-sensing behavior of green and red upconversion emissions from Stark sublevels of Er3+, Sensors, 15, 30981, 10.3390/s151229839 Zhang, 2019, Modulated up-conversion luminescence and low-temperature sensing of Gd3Ga5O12:Yb3+/Er3+ by incorporation of Fe3+ ions, J. Alloy. Comp., 781, 467, 10.1016/j.jallcom.2018.12.147 Zhang, 2019, Optical temperature sensing using upconversion luminescence in rare-earth ions doped Ca2Gd8(SiO4)6O2 phosphors, J. Alloy. Comp., 771, 838, 10.1016/j.jallcom.2018.09.022 Liu, 2016, Effect of the Yb3+ concentration in up-conversion and electrical properties of Ho3+/Yb3+ Co-doped (0.94Na0.5Bi0.5TiO3-0.06BaTiO3) ceramics, J. Electron. Mater., 45, 3473, 10.1007/s11664-016-4483-8 Chai, 2017, Upconversion luminescence and temperature-sensing properties of Ho3+/Yb3+-codoped ZnWO4 phosphors based on fluorescence intensity ratios, RSC Adv., 7, 40046, 10.1039/C7RA05846B Li, 2016, Large electrostrain and high optical temperature sensitivity in BaTiO3-(Na0.5Ho0.5)TiO3 multifunctional ferroelectric ceramics, Dalton Trans., 45, 11733, 10.1039/C6DT01424K Singh, 2007, Ho3+:TeO2 glass, a probe for temperature measurements, Sens. Actuators A Phys., 136, 173, 10.1016/j.sna.2006.10.045 Singh, 2007, Upconversion and optical thermometry in Ho3+:TeO2 glass, effect of addition of PbO2 and BaCO3, Appl. Phys. B, 86, 661, 10.1007/s00340-006-2505-6 Verma, 2012, Laser induced optical heating from Yb3+/Ho3+:Ca12Al14O33 and its applicability as a thermal probe, J. Quant. Spectrosc. Radiat. Transf., 113, 1594, 10.1016/j.jqsrt.2012.04.001 Qiang, 2019, Enhanced optical temperature sensing and upconversion emissions based on the Mn2+ codoped NaGdF4:Yb3+,Ho3+ nanophosphor, New J. Chem., 43, 5011, 10.1039/C8NJ05079A Zhou, 2019, Excellent photoluminescence and temperature sensing properties in Ho3+/Yb3+ codoped (Y0.88La0.09Zr0.03)2O3 transparent ceramics, Ceram. Int., 45, 7696, 10.1016/j.ceramint.2019.01.070 Lojpur, 2013, Y2O3:Yb,Tm and Y2O3:Yb,Ho powders for low-temperature thermometry based on up-conversion fluorescence, Ceram. Int., 39, 1129, 10.1016/j.ceramint.2012.07.036 Zuo, 2016, High dielectric, piezoelectric, upconversion photoluminescence and low-temperature sensing properties in Ba0.7Sr0.3TiO3-BaZr0.2Ti0.8O3:Ho/Yb ceramics, J. Electron. Mater., 45, 970, 10.1007/s11664-015-4247-x Pandey, 2013, Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor, Dalton Trans., 42, 11005, 10.1039/c3dt50592h Dey, 2015, CaMoO4:Ho3+-Yb3+-Mg2+ upconverting phosphor for application in lighting devices and optical temperature sensing, Sens. Actuators B Chem., 210, 581, 10.1016/j.snb.2015.01.007 Xu, 2012, Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior, Opt. Express, 20, 18127, 10.1364/OE.20.018127 Zhou, 2014, Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4, J. Alloy. Comp., 588, 654, 10.1016/j.jallcom.2013.11.132 Hui, 2015, Bright green emission in Ho3+-Yb3+ Co-doped Bi1/2Na1/2TiO3 ferroelectric ceramics and the optical thermometry behavior, Ferroelectrics, 487, 133, 10.1080/00150193.2015.1071601 Cao, 2014, Up-conversion luminescence and optical thermometry characterization of Ho3+/Yb3+ co-doped SrBi4Ti4O15 ferroelectric ceramics, SCIENTIA SINICA Technologica, 44, 1254, 10.1360/N092014-00201 Wang, 2019, Investigation on the up-conversion luminescence and temperature sensing properties based on non-thermally coupled levels of rare earth ions doped Ba2In2O5 phosphor, J. Lumin., 206, 273, 10.1016/j.jlumin.2018.10.034 Wade, 1999, Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique, Rev. Sci. Instrum., 70, 4279, 10.1063/1.1150067 Rakov, 2014, Nd3+-Yb3+ doped powder for near-infrared optical temperature sensing, Opt. Lett., 39, 3767, 10.1364/OL.39.003767 Smith, 2009, Bioimaging: second window for in vivo imaging, Nat. Nanotechnol., 4, 710, 10.1038/nnano.2009.326 Ximendes, 2016, Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers, Nano Lett., 16, 1695, 10.1021/acs.nanolett.5b04611 Rai, 2006, Pr3+ doped lithium tellurite glass as a temperature sensor, Sens. Actuators B Chem., 128, 14, 10.1016/j.sna.2005.12.030 Ding, 2018, β-NaYF4:Yb3+/Er3+ nanocrystals embedded sol-gel glass ceramics for self-calibrated optical thermometry, Ceram. Int., 44, 14884, 10.1016/j.ceramint.2018.05.125 Xu, 2012, An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic, Sens. Actuators B Chem., 173, 250, 10.1016/j.snb.2012.07.009 Xu, 2013, Highly sensitive optical thermometry through thermally enhanced near infrared emissions from Nd3+/Yb3+ codoped oxyfluoride glass ceramic, Sens. Actuators B Chem., 178, 520, 10.1016/j.snb.2012.12.050 Xu, 2015, Multifunctional nanoparticles based on the Nd3+/Yb3+ codoped NaYF4, Opt. Lett., 40, 5678, 10.1364/OL.40.005678 Shi, 2019, Highly sensitive up-conversion thermometric performance in Nd3+ and Yb3+ sensitized Ba4La2Ti4Nb6O30 based on near-infrared emissions, J. Phys. Chem. Solids, 124, 130, 10.1016/j.jpcs.2018.09.013 Zhao, 2018, Lead-free rare earth-modified (K0.44Na0.52Li0.04)(Nb0.86Ta0.1Sb0.04)O3 ceramics: phase structure, electrical and photoluminescence properties, J. Mater. Sci. Mater. Electron., 29, 4791, 10.1007/s10854-017-8435-8 Li, 2012, Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3, Opt. Commun., 285, 1925, 10.1016/j.optcom.2011.12.075 Zhou, 2014, Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles, Opt. Lett., 39, 6687, 10.1364/OL.39.006687 Soni, 2015, Stark sublevels in Tm3+-Yb3+ codoped Na2Y2B2O7 nanophosphor for multifunctional applications, RSC Adv., 5, 34999, 10.1039/C4RA15891A Rocha, 2013, Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles, ACS Nano, 7, 1188, 10.1021/nn304373q Wang, 2013, Optical temperature sensing of NaYbF4:Tm3+@SiO2 core-shell micro-particles induced by infrared excitation, Opt. Express, 21, 21596, 10.1364/OE.21.021596 Pereira, 2015, Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers, Sens. Actuators B Chem., 213, 65, 10.1016/j.snb.2015.01.136 Suo, 2017, All-in-one thermometer-heater up-converting platform YF3:Yb3+,Tm3+ operating in the first biological window, J. Mater. Chem. C, 5, 1501, 10.1039/C6TC05449H Xing, 2015, Effect of crystallinity on the optical thermometry sensitivity of Tm3+/Yb3+ codoped LiNbO3 crystal, Sens. Actuators B Chem., 221, 458, 10.1016/j.snb.2015.06.132 Wang, 2019, Investigation for the upconversion luminescence and temperature sensing mechanism based on BiPO4:Yb3+,RE3+ (RE3+ = Ho3+, Er3+ and Tm3+), J. Alloy. Comp., 772, 371, 10.1016/j.jallcom.2018.09.070 Lu, 2019, Ultranarrow NIR bandwidth and temperature sensing of YOF:Yb3+/Tm3+ phosphor in low temperature range, J. Lumin., 206, 613, 10.1016/j.jlumin.2018.10.091 Wu, 2019, Intense near-infrared emission, upconversion processes and temperature sensing properties of Tm3+ and Yb3+ co-doped double perovskite Gd2ZnTiO6 phosphors, J. Alloy. Comp., 804, 486, 10.1016/j.jallcom.2019.07.036 Li, 2008, Significant temperature effects on up-conversion emissions of Nd3+:Er3+:Yb3+ co-doped borosilicate glass and its thermometric application, Sens. Actuators B Chem., 134, 313, 10.1016/j.snb.2008.05.003 Pandey, 2012, Colour emission tunability in Ho3+-Tm3+-Yb3+ co-doped Y2O3 upconverted phosphor, Appl. Phys. B, 109, 611, 10.1007/s00340-012-5224-1 Kumar Rai, 2013, Photoluminescence study of Y2O3:Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications, J. Appl. Phys., 113, 083104, 10.1063/1.4793265 Chen, 2019, Yb3+/Tb3+/Ho3+: phosphate nanophase embedded glass ceramics: enhanced upconversion emission and temperature sensing behavior, J. Mater. Sci. Mater. Electron., 30, 778, 10.1007/s10854-018-0347-8 Pang, 2018, Controllable upconversion luminescence and temperature sensing behavior in NaGdF4:Yb3+/Ho3+/Ce3+ nano-phosphors, Mater. Res. Express, 5, 015049, 10.1088/2053-1591/aaa683 Sun, 2019, Designing down-and up-conversion dual-mode luminescence of lanthanide-doped phosphors for temperature sensing, J. Lumin., 206, 176, 10.1016/j.jlumin.2018.10.058 Han, 2019, Optical temperature sensing based on thermal, non-thermal coupled levels and tunable luminescent emission colors of Er3+/Tm3+/Yb3+ tri-doped Y7O6F9 phosphor, J. Alloy. Comp., 786, 770, 10.1016/j.jallcom.2019.02.047 Lei, 2018, Intense near-infrared-II luminescence from NaCeF4:Er/Yb nanoprobes for in vitro bioassay and in vivo bioimaging, Chem. Sci., 9, 4682, 10.1039/C8SC00927A Mueller, 2008, Exposure modeling of engineered nanoparticles in the environment, Environ. Sci. Technol., 42, 4447, 10.1021/es7029637 Gnach, 2015, Upconverting nanoparticles: assessing the toxicity, Chem. Soc. Rev., 44, 1561, 10.1039/C4CS00177J Nadort, 2016, Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties, Nanoscale, 8, 13099, 10.1039/C5NR08477F