Optical temperature sensing of up-conversion luminescent materials: Fundamentals and progress
Tài liệu tham khảo
Chen, 2017, Eu2+/Eu3+ dual-emitting glass ceramic for self-calibrated optical thermometry, Sens. Actuators B Chem., 246, 756, 10.1016/j.snb.2017.02.159
Chen, 2017, Ln3+-Sensitized Mn4+ near-infrared upconverting luminescence and dual-modal temperature sensing, J. Mater. Chem. C, 5, 9619, 10.1039/C7TC02182H
Chen, 2016, EuF3/Ga2O3 dual-phase nanostructural glass ceramics with Eu2+/Cr3+ dual-activator luminescence for self-calibrated optical thermometry, J. Phys. Chem. C, 120, 21858, 10.1021/acs.jpcc.6b08271
Zhong, 2018, A review on nanostructured glass ceramics for promising application in optical thermometry, J. Alloy. Comp., 763, 34, 10.1016/j.jallcom.2018.05.348
Li, 2016, The emission rise time of BaY2ZnO5:Eu3+ for non-contact luminescence thermometry, J. Alloy. Comp., 657, 353, 10.1016/j.jallcom.2015.10.101
Xu, 2017, Optical temperature sensing in Er3+-Yb3+ codoped CaWO4 and the laser induced heating effect on the luminescence intensity saturation, J. Alloy. Comp., 726, 547, 10.1016/j.jallcom.2017.08.007
Xu, 2019, Enhanced NIR-NIR luminescence from CaWO4:Nd3+/Yb3+ phosphors by Li+ codoping for thermometry and optical heating, J. Lumin., 208, 415, 10.1016/j.jlumin.2019.01.005
Zhang, 2019, Fabrication, photothermal conversion and temperature sensing of novel nanoplatform-hybrid nanocomposite of NaYF4:Er3+,Yb3+@NaYF4 and Au nanorods for photothermal therapy, Mater. Res. Bull., 114, 148, 10.1016/j.materresbull.2019.03.003
Wang, 2015, Optical temperature sensing of rare-earth ion doped phosphors, RSC Adv., 5, 86219, 10.1039/C5RA16986K
Sidiroglou, 2003, Effects of high-temperature heat treatment on Nd3+-doped optical fibers for use in fluorescence intensity ratio based temperature sensing, Rev. Sci. Instrum., 74, 3524, 10.1063/1.1578706
Chen, 2016, Highly sensitive dual-phase nanoglass-ceramics self-calibrated optical thermometer, Anal. Chem., 88, 4099, 10.1021/acs.analchem.6b00434
Runowski, 2018, Multifunctional optical sensors for nanomanometry and nanothermometry: high-pressure and high-temperature upconversion luminescence of lanthanide-doped phosphates--LaPO4/YPO4:Yb3+-Tm3+, ACS Appl. Mater. Interfaces, 10, 17269, 10.1021/acsami.8b02853
Zhu, 2018, Upconversion nanocomposite for programming combination cancer therapy by precise control of microscopic temperature, Nat. Commun., 9, 2176, 10.1038/s41467-018-04571-4
Duan, 2018, Recent progress in upconversion luminescence nanomaterials for biomedical applications, J. Mater. Chem. B, 6, 192, 10.1039/C7TB02527K
Dong, 2015, Energy transfer in lanthanide upconversion studies for extended optical applications, Chem. Soc. Rev., 44, 1608, 10.1039/C4CS00188E
Wang, 2011, Tuning upconversion through energy migration in core-shell nanoparticles, Nat. Mater., 10, 968, 10.1038/nmat3149
Carnall, 1989, A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3, J. Chem. Phys., 90, 3443, 10.1063/1.455853
Sakakibara, 1999, Whole field measurement of temperature in water using two-color laser induced fluorescence, Exp. Fluid, 26, 7, 10.1007/s003480050260
Lin, 2016, Relationship between rare earth fluorescence characteristic and temperature, Acta Photonica Sin., 45, 127
Zhou, 2017, Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles, Sens. Actuators B Chem., 246, 352, 10.1016/j.snb.2017.02.070
Chambers, 2009, Doped oxides for high-temperature luminescence and lifetime thermometry, Annu. Rev. Mater. Res., 39, 325, 10.1146/annurev-matsci-112408-125237
Omrane, 2002, Two-dimensional surface temperature measurements of burning materials, Proc. Combust. Inst., 29, 2653, 10.1016/S1540-7489(02)80323-6
Kalytchuk, 2017, Carbon dot nanothermometry: intracellular photoluminescence lifetime thermal sensing, ACS Nano, 11, 1432, 10.1021/acsnano.6b06670
Chen, 2015, Cr3+-doped gallium-based transparent bulk glass ceramics for optical temperature sensing, J. Eur. Ceram. Soc., 35, 4211, 10.1016/j.jeurceramsoc.2015.08.005
Uchiyama, 2003, Fiber-optic thermometer using Cr-doped YAlO3 sensor head, Rev. Sci. Instrum., 74, 3883, 10.1063/1.1589582
Kitaoka, 2013, Excited Cr impurity states in Al2O3 from constraint density functional theory, Phys. Rev. B, 87, 205113, 10.1103/PhysRevB.87.205113
Brübach, 2013, On surface temperature measurements with thermographic phosphors: a review, Prog. Energy Combust. Sci., 39, 37, 10.1016/j.pecs.2012.06.001
Eckert, 2010, Sol-gel deposition of multiply doped thermographic phosphor coatings Al2O3:(Cr3+,M3+)(M = Dy,Tm) for wide range surface temperature measurement application, Prog. Org. Coat., 68, 126, 10.1016/j.porgcoat.2009.08.021
Brübach, 2011, A survey of phosphors novel for thermography, J. Lumin., 131, 559, 10.1016/j.jlumin.2010.10.017
Kissel, 2013, Phosphor thermometry: on the synthesis and characterisation of Y3Al5O12:Eu (YAG:Eu) and YAlO3:Eu (YAP:Eu), Mater. Chem. Phys., 140, 435, 10.1016/j.matchemphys.2013.02.065
Sakirzanovas, 2012, Concentration influence on temperature-dependent luminescence properties of samarium substituted strontium tetraborate, J. Lumin., 132, 141, 10.1016/j.jlumin.2011.08.011
Pal, 2013, Effect of temperature and pressure on emission lifetime of Sm2+ ion doped in MFX (M = Sr, Ba; X = Br, I) crystals, J. Lumin., 142, 66, 10.1016/j.jlumin.2013.03.011
Zhang, 2017, Luminescence and energy transfer of dual-emitting solid solution phosphors (Ca,Sr)10Li(PO4)7:Ce3+,Mn2+ for ratiometric temperature sensing, Ind. Eng. Chem. Res., 56, 890, 10.1021/acs.iecr.6b03748
Zhang, 2018, Upconversion luminescence of Ba9Y2Si6O24:Yb3+-Ln3+ (Ln = Er, Ho, and Tm) phosphors for temperature sensing, Mater. Chem. Phys., 206, 40, 10.1016/j.matchemphys.2017.12.007
Cai, 2009, Point temperature sensor based on green decay in an Er:ZBLALiP microsphere, J. Lumin., 129, 1994, 10.1016/j.jlumin.2009.04.039
Okabe, 2012, Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy, Nat. Commun., 3, 705, 10.1038/ncomms1714
Yu, 2012, Temperature-dependent fluorescence in carbon dots, J. Phys. Chem. C, 116, 25552, 10.1021/jp307308z
Qiao, 2018, Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence, J. Am. Chem. Soc., 140, 9730, 10.1021/jacs.8b06021
Bu, 2017, Temperature dependent photoluminescence of Eu3+-doped Ca7V4O17, J. Lumin., 190, 50, 10.1016/j.jlumin.2017.05.015
Jia, 2018, Investigation on two forms of temperature-sensing parameters for fluorescence intensity ratio thermometry based on thermal coupled theory, Inorg. Chem., 57, 1213, 10.1021/acs.inorgchem.7b02634
Green, 2018, Optical temperature sensing with infrared excited upconversion nanoparticles, Front. Chem., 6, 10.3389/fchem.2018.00416
Zhao, 2019, Optical temperature sensing properties of a phosphor mixture of Sr2Mg3P4O15:Eu2+ and SrB4O7:Sm2+, Mater. Res. Bull., 109, 103, 10.1016/j.materresbull.2018.09.032
Lei, 2019, Ultrahigh-sensitive optical temperature sensing in Pr3+:Y2Ti2O7 based on diverse thermal response from trap emission and Pr3+ red luminescence, J. Lumin., 205, 440, 10.1016/j.jlumin.2018.09.029
Liang, 2016, Noncontact thermometry based on downconversion luminescence from Eu3+ doped LiNbO3 single crystal, Sens. Actuators A Phys., 238, 215, 10.1016/j.sna.2015.12.018
Chai, 2016, Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er3+/Yb3+ co-doped ZnWO4, Opt. Express, 24, 22438, 10.1364/OE.24.022438
Zhao, 2019, Isostructural Tb3+/Eu3+ Co-doped metal-organic framework based on pyridine-containing dicarboxylate ligands for ratiometric luminescence temperature sensing, Inorg. Chem., 58, 2637, 10.1021/acs.inorgchem.8b03225
Xu, 2013, Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4, Sens. Actuators B Chem., 188, 1096, 10.1016/j.snb.2013.07.094
Du, 2015, Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics, J. Alloy. Comp., 632, 73, 10.1016/j.jallcom.2015.01.130
Sun, 2017, High sensitivity thermometry and optical heating Bi-function of Yb3+/Tm3+ Co-doped BaGd2ZnO5 phosphors, Curr. Appl. Phys., 17, 255, 10.1016/j.cap.2016.12.002
Shi, 2019, Photoluminescence and impedance properties of rare-earth doped (K0.5Na0.5)NbO3 lead-free ceramics, J. Mater. Sci. Mater. Electron., 30, 9, 10.1007/s10854-018-0328-y
Wang, 2017, Controlled synthesis, multicolor luminescence, and optical thermometer of bifunctional NaYbF4:Nd3+@NaYF4:Yb3+ active-core/active-shell colloidal nanoparticles, J. Alloy. Comp., 691, 530, 10.1016/j.jallcom.2016.08.262
Chen, 2010, Color-tunable luminescence of Eu3+ in LaF3 embedded nanocomposite for light emitting diode, Acta Mater., 58, 3035, 10.1016/j.actamat.2010.01.035
Park, 2012, Melilite-structure CaYAl3O7:Eu3+ phosphor: structural and optical characteristics for near-UV LED-based white light, J. Phys. Chem. C, 116, 26850, 10.1021/jp307192y
Zhang, 2015, Photoluminescence properties of heavily Eu3+-doped BaCa2In6O12 phosphor for white-light-emitting diodes, J. Am. Ceram. Soc., 98, 1567, 10.1111/jace.13511
Du, 2017, Rare-earth doped (K0.5Na0.5)NbO3 multifunctional ceramics, J. Mater. Sci. Mater. Electron., 28, 5288, 10.1007/s10854-016-6186-6
Meijer, 2010, Downconversion for solar cells in YF3:Nd3+,Yb3+, Phys. Rev. B, 81, 035107, 10.1103/PhysRevB.81.035107
Senapati, 2017, Ultrahigh-sensitive optical temperature sensing based on quasi-thermalized green emissions from Er:ZnO, Phys. Chem. Chem. Phys., 19, 2346, 10.1039/C6CP06608A
León-Luis, 2013, Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors, Sens. Actuators B Chem., 176, 1167, 10.1016/j.snb.2012.09.067
Vijaya, 2013, Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors, Sens. Actuators B Chem., 186, 156, 10.1016/j.snb.2013.05.081
León-Luis, 2012, Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors, Sens. Actuators B Chem., 174, 176, 10.1016/j.snb.2012.08.019
León-Luis, 2011, Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass, Sens. Actuators B Chem., 158, 208, 10.1016/j.snb.2011.06.005
Jiang, 2014, Neodymium doped lanthanum oxysulfide as optical temperature sensors, J. Lumin., 152, 156, 10.1016/j.jlumin.2013.10.027
Pérez-Rodríguez, 2014, Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique, Sens. Actuators B Chem., 195, 324, 10.1016/j.snb.2014.01.037
Rakov, 2017, Near-infrared emission and optical temperature sensing performance of Nd3+:SrF2 crystal powder prepared by combustion synthesis, J. Appl. Phys., 121, 113103, 10.1063/1.4978380
Yao, 2016, Energy transfer, tunable emission and optical thermometry in Tb3+/Eu3+ co-doped transparent NaCaPO4 glass ceramics, Ceram. Int., 42, 13086, 10.1016/j.ceramint.2016.05.092
Zhou, 2018, Color tunable emission and low-temperature luminescent sensing of europium and terbium carboxylic acid complexes, Inorg. Chim. Acta, 469, 576, 10.1016/j.ica.2017.10.014
Chen, 2018, Down-conversion luminescence and optical thermometric performance of Tb3+/Eu3+ doped phosphate glass, J. Non-Cryst. Solids, 484, 111, 10.1016/j.jnoncrysol.2018.01.027
Loos, 2017, Temperature-dependent luminescence and energy transfer properties of Tb3+ and Eu3+ doped barium borate glasses, J. Lumin., 181, 31, 10.1016/j.jlumin.2016.08.066
Xia, 2012, Near-infrared luminescence and energy transfer studies of LaOBr:Nd3+/Yb3+, Opt. Express, 20, A722, 10.1364/OE.20.00A722
Gai, 2013, Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications, Chem. Rev., 114, 2343, 10.1021/cr4001594
Wang, 2013, Luminescent probes and sensors for temperature, Chem. Soc. Rev., 42, 7834, 10.1039/c3cs60102a
Bünzli, 2017, Rising stars in science and technology: luminescent lanthanide materials, Eur. J. Inorg. Chem., 2017, 5058, 10.1002/ejic.201701201
Li, 2009, Dual-mode luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals, Adv. Mater., 21, 1945, 10.1002/adma.200803228
Liu, 2011, Designing lanthanide-doped nanocrystals with both up- and down-conversion luminescence for anti-counterfeiting, Nanoscale, 3, 4804, 10.1039/c1nr10752f
Wang, 2011, Dual-mode luminescence from lanthanide tri-doped NaYF4 nanocrystals, Mater. Lett., 65, 504, 10.1016/j.matlet.2010.10.080
Verma, 2012, Dual mode green fluorescence from Tb3+:Ca12Al14O33 and its applicability as delayed fluorescence, Mater. Res. Bull., 47, 3726, 10.1016/j.materresbull.2012.06.033
Grzyb, 2013, The effects of down-and up-conversion on dual-mode green luminescence from Yb3+-and Tb3+-doped LaPO4 nanocrystals, J. Mater. Chem. C, 1, 5410, 10.1039/c3tc31100g
Singh, 2013, Probing a highly efficient dual mode: down-upconversion luminescence and temperature sensing performance of rare-earth oxide phosphors, Dalton Trans., 42, 1065, 10.1039/C2DT32054A
Li, 2013, Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+, Dalton Trans., 42, 7971, 10.1039/c3dt32964j
Chai, 2015, Dual-mode luminescence, temperature sensing and dielectric performance in Pr3+/Er3+ Co-doped BaTiO3-CaTiO3 diphase ferroelectric oxides, Ferroelectrics, 488, 54, 10.1080/00150193.2015.1072024
Chai, 2015, Dual-mode photoluminescence, temperature sensing and enhanced ferroelectric properties in Er-doped (Ba0.4Ca0.6)TiO3 multifunctional diphase ceramics, Mat. Sci. Eng. B-Adv., 201, 23, 10.1016/j.mseb.2015.06.011
Chai, 2016, Bright dual-mode green emission and temperature sensing properties in Er3+/Yb3+ co-doped MgWO4 phosphor, RSC Adv., 6, 64072, 10.1039/C6RA09656E
Chai, 2016, 1
Du, 2016, The dual-model up/down-conversion green luminescence of Gd6O5F8:Yb3+,Ho3+,Li+ and its application for temperature sensing, J. Mater. Chem. C, 4, 7148, 10.1039/C6TC01812B
Zhou, 2019, Efficient solid-state and dual-mode photoluminescence of carbon-dots/NaLuF4 microcrystals for multifunctional applications, J. Alloy. Comp., 775, 457, 10.1016/j.jallcom.2018.10.125
Zhai, 2019, The impedance, dielectric and piezoelectric properties of Tb4O7 and Tm2O3 doped KNN ceramics, J. Mater. Sci.-Mater. El., 30, 4352, 10.1007/s10854-019-00748-9
Zhai, 2019, Temperature stability and electrical properties of Tm2O3 doped KNN-based ceramics, J. Mater. Sci. Mater. Electron., 1
Donner, 2012, Mapping intracellular temperature using green fluorescent protein, Nano Lett., 12, 2107, 10.1021/nl300389y
Huang, 2019, Unraveling the electronic structures of neodymium in LiLuF4 nanocrystals for ratiometric temperature sensing, Adv. Sci., 6, 1802282, 10.1002/advs.201802282
Dawson, 2018, Excitation modulation of upconversion nanoparticles for switch-like control of ultraviolet luminescence, J. Am. Chem. Soc., 140, 5714, 10.1021/jacs.7b13677
Zhou, 2013, Upconversion luminescence of NaYF4:Yb3+,Er3+ for temperature sensing, Opt. Commun., 291, 138, 10.1016/j.optcom.2012.11.005
Zheng, 2013, Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals, J. Mater. Chem. C, 1, 5502, 10.1039/c3tc30763h
Klier, 2015, Upconversion luminescence properties of NaYF4:Yb:Er nanoparticles codoped with Gd3+, J. Phys. Chem. C, 119, 3363, 10.1021/jp5103548
Chen, 2015, Bulk glass ceramics containing Yb3+/Er3+:β-NaGdF4 nanocrystals: phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior, J. Alloy. Comp., 638, 21, 10.1016/j.jallcom.2015.02.170
Su, 2016, Resonance energy transfer in upconversion nanoplatforms for selective biodetection, Accounts Chem. Res., 50, 32, 10.1021/acs.accounts.6b00382
Zhou, 2015, Controlling upconversion nanocrystals for emerging applications, Nat. Nanotechnol., 10, 924, 10.1038/nnano.2015.251
Suyver, 2005, Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion, Opt. Mater., 27, 1111, 10.1016/j.optmat.2004.10.021
Tripathi, 2007, Upconversion and temperature sensing behavior of Er3+ doped Bi2O3-Li2O-BaO-PbO tertiary glass, Opt. Mater., 30, 201, 10.1016/j.optmat.2006.09.021
Li, 2016, Broadband near-infrared photoluminescence and strong visible up-conversion emission in BaTiO3-(Na0.5Er0.5)TiO3 lead-free piezoelectric ceramics, Ferroelectrics, 490, 118, 10.1080/00150193.2015.1072685
Zheng, 2016, Temperature sensing based on up-conversion luminescence of (1-x)Na0.5Bi2.5Ta2O9+xNa0.5Er0.5TiO3 ceramics, J. Mater. Sci. Mater. Electron., 27, 7994, 10.1007/s10854-016-4794-9
Zhang, 2017, Enhanced electrical properties, color-tunable up-conversion luminescence, and temperature sensing behaviour in Er-doped Bi3Ti1.5W0.5O9 multifunctional ferroelectric ceramics, J. Appl. Phys., 121, 124102, 10.1063/1.4979096
Zhang, 2018, Simultaneously excellent upconversion luminescence and temperature sensing properties in tungstate multiphase phosphors, J. Mater. Sci. Mater. Electron., 29, 19840, 10.1007/s10854-018-0112-z
Zhang, 2018, Excellent up-conversion temperature sensing sensitivity and broad temperature range of Er-doped strontium tungstate multiphase phosphors, Opt. Mater. Express, 8, 12, 10.1364/OME.8.000012
Zhang, 2018, Enhanced up-conversion luminescence and excellent temperature sensing properties in Yb3+ sensitized Er3+-doped Bi3Ti1.5W0.5O9 multifunctional ferroelectric ceramics, J. Alloy. Comp., 735, 473, 10.1016/j.jallcom.2017.11.085
Zou, 2015, Optical thermometry based on the upconversion luminescence from Er doped Bi7Ti4TaO21 ferroelectric ceramics, J. Mater. Sci. Mater. Electron., 26, 6502, 10.1007/s10854-015-3244-4
Zhang, 2019, xLiNbO3-(1-x)(K,Na)NbO3 ceramics: a new class of phosphors with tunable upconversion luminescence by external electric field and excellent optical temperature sensing property, J. Alloy. Comp., 770, 214, 10.1016/j.jallcom.2018.08.019
Cao, 2011, Optical temperature sensing behavior of enhanced green upconversion emissions from Er-Mo:Yb2Ti2O7 nanophosphor, Sens. Actuators B Chem., 159, 8, 10.1016/j.snb.2011.05.018
Wang, 2018, Modifying phase, shape and optical thermometry of NaGdF4:2% Er3+ phosphors through Ca2+ doping, Opt. Express, 26, 21950, 10.1364/OE.26.021950
Rai, 2016, Efficient color tunable ZnWO4:Er3+-Yb3+ phosphor for high temperature sensing, J. Disp. Technol., 12, 1472, 10.1109/JDT.2016.2602503
Zhang, 2016, Thermometry and up-conversion luminescence of Yb3+-Er3+ co-doped Na2Ln2Ti3O10 (Ln = Gd, La) phosphors, Phys. Chem. Chem. Phys., 18, 18828, 10.1039/C6CP02746F
Wei, 2016, Upconversion of SrWO4: Er3+/Yb3+: improvement by Yb3+ codoping and temperature sensitivity for optical temperature sensors, Chem. Phys. Lett., 651, 46, 10.1016/j.cplett.2016.03.006
Wang, 2016, Up-conversion luminescence and optical temperature-sensing properties of Er3+-doped perovskite Na0.5Bi0.5TiO3 nanocrystals, J. Phys. Chem. Solids, 98, 28, 10.1016/j.jpcs.2016.06.002
Du, 2015, The simultaneous realization of high-and low-temperature thermometry in Er3+/Yb3+-codoped Y2O3 nanoparticles, Mater. Lett., 143, 209, 10.1016/j.matlet.2014.12.123
Zuo, 2015, The electrical, upconversion emission, and temperature sensing properties of Er3+/Yb3+-codoped Ba (Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ferroelectric ceramics, J. Alloy. Comp., 632, 711, 10.1016/j.jallcom.2015.01.296
Mukhopadhyay, 2017, 980 nm excited Er3+/Yb3+/Li+/Ba2+:NaZnPO4 upconverting phosphors in optical thermometry, J. Lumin., 187, 368, 10.1016/j.jlumin.2017.03.035
Cao, 2017, Wide-range thermometry based on green up-conversion luminescence of K3LuF6:Yb3+/Er3+ bulk oxyfluoride glass ceramics, J. Am. Ceram. Soc., 100, 2108, 10.1111/jace.14606
Soni, 2017, Thermal and pump power effect in SrMoO4:Er3+-Yb3+ phosphor for thermometry and optical heating, Chem. Phys. Lett., 667, 226, 10.1016/j.cplett.2016.12.002
Cao, 2017, Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7 nano-crystals in bulk glass ceramics, J. Alloy. Comp., 693, 326, 10.1016/j.jallcom.2016.09.163
Mahata, 2015, Incorporation of Zn2+ ions into BaTiO3:Er3+/Yb3+ nanophosphor: an effective way to enhance upconversion, defect luminescence and temperature sensing, Phys. Chem. Chem. Phys., 17, 20741, 10.1039/C5CP01874A
Pandey, 2015, Upconversion based temperature sensing ability of Er3+-Yb3+ codoped SrWO4: an optical heating phosphor, Sens. Actuators B Chem., 209, 352, 10.1016/j.snb.2014.11.126
Du, 2015, Infrared-to-visible upconversion emission of Er3+/Yb3+-codoped SrMoO4 phosphors as wide-range temperature sensor, Curr. Appl. Phys., 15, 1576, 10.1016/j.cap.2015.09.013
Yang, 2015, Optical temperature sensing behavior of high-efficiency upconversion: Er3+-Yb3+ Co-doped NaY(MoO4)2 phosphor, J. Am. Ceram. Soc., 98, 2595, 10.1111/jace.13624
Soni, 2015, Optical investigation in shuttle like BaMoO4:Er3+-Yb3+ phosphor in display and temperature sensing, Sens. Actuators B Chem., 216, 64, 10.1016/j.snb.2015.04.017
He, 2015, Optical temperature sensing properties of Yb3+-Er3+ co-doped NaLnTiO4 (Ln = Gd, Y) up-conversion phosphors, RSC Adv., 5, 1385, 10.1039/C4RA11771A
Du, 2015, Effect of molybdenum on upconversion emission and temperature sensing properties in Na0.5Bi0.5TiO3:Er/Yb ceramics, Ceram. Int., 41, 6710, 10.1016/j.ceramint.2015.01.113
Tiwari, 2015, Enhanced temperature sensing response of upconversion luminescence in ZnO-CaTiO3:Er3+/Yb3+ nano-composite phosphor, Spectrochim. Acta A, 150, 623, 10.1016/j.saa.2015.05.081
Liu, 2015, Investigation into the temperature sensing behavior of Yb3+ sensitized Er3+ doped Y2O3, YAG and LaAlO3 phosphors, RSC Adv., 5, 51820, 10.1039/C5RA05986K
Li, 2015, Optical thermometry based on up-conversion luminescence behavior of Er3+-doped transparent Sr2YbF7 glass-ceramics, J. Am. Ceram. Soc., 98, 3824, 10.1111/jace.13804
Du, 2014, Upconversion emission in Er-doped and Er/Yb-codoped ferroelectric Na0.5Bi0.5TiO3 and its temperature sensing application, J. Appl. Phys., 116, 014102, 10.1063/1.4886575
Singh, 2014, Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions, Phys. Chem. Chem. Phys., 16, 22665, 10.1039/C4CP02949F
Yang, 2014, Optical thermometry based on the upconversion fluorescence from Yb3+/Er3+ codoped La2O2S phosphor, Ceram. Int., 40, 9875, 10.1016/j.ceramint.2014.02.081
Gavrilović, 2014, Multifunctional Eu3+-and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method, Sci. Rep., 4, 4209, 10.1038/srep04209
Li, 2014, Green up-conversion luminescence of Yb3+-Er3+ co-doped CaLa2ZnO5 for optically temperature sensing, RSC Adv., 4, 6391, 10.1039/c3ra47264g
Pandey, 2014, Enhanced upconversion and temperature sensing study of Er3+-Yb3+ codoped tungsten-tellurite glass, Sens. Actuators B Chem., 202, 1305, 10.1016/j.snb.2014.06.074
Wang, 2014, Optical temperature sensing of hexagonal Na0.82Ca0.08Er0.16Y0.853F4 phosphor, RSC Adv., 4, 24170, 10.1039/c4ra02779e
Hui, 2014, A new multifunctional Aurivillius oxide Na0.5Er0.5Bi4Ti4O15: up-conversion luminescent, dielectric, and piezoelectric properties, Ceram. Int., 40, 12477, 10.1016/j.ceramint.2014.04.102
Du, 2014, Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic, Appl. Phys. Lett., 104, 152902, 10.1063/1.4871378
Tian, 2013, Intense red upconversion emission and temperature sensing in Er3+/Yb3+ co-doped Ba5Gd8Zn4O21 phosphor, Mater. Express, 3, 241, 10.1166/mex.2013.1121
Yang, 2013, Highly sensitive optical thermometry based on the upconversion fluorescence from Yb3+/Er3+ codoped La2(WO4)3:Yb3+,Er3+ phosphor//2013 International Conference on optical instruments and technology: optical sensors and applications, Int. Soc. Opt. Photon., 9044, 904408
Dong, 2012, Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides, Adv. Mater., 24, 1987, 10.1002/adma.201200431
Dong, 2012, Optical temperature sensing through extraordinary enhancement of green up-conversion emissions for Er-Yb-Mo: Al2O3, Sens. Actuators B Chem., 165, 34, 10.1016/j.snb.2012.01.068
Liu, 2011, Optical thermometry through green and red upconversion emissions in Er3+/Yb3+/Li+:ZrO2 nanocrystals, Opt. Commun., 284, 1876, 10.1016/j.optcom.2010.12.030
Rakov, 2012, Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders, Sens. Actuators B Chem., 164, 96, 10.1016/j.snb.2012.01.070
Lai, 2010, Optical transition and upconversion luminescence in Er3+ doped and Er3+-Yb3+ co-doped fluorophosphate glasses, Opt. Mater., 32, 1154, 10.1016/j.optmat.2010.03.023
Mondal, 2017, Influence of silica surface coating on optical properties of Er3+-Yb3+:YMoO4 upconverting nanoparticles, Chem. Eng. J., 327, 838, 10.1016/j.cej.2017.06.166
Zhang, 2019, Electronic structure, upconversion luminescence and optical temperature sensing behavior of Yb3+-Er3+/Ho3+ doped NaLaMgWO6, J. Alloy. Comp., 783, 84, 10.1016/j.jallcom.2018.12.281
Yao, 2019, Effect of Li co-doping with Er on up-conversion luminescence property and its temperature dependence of NaY(WO4)2, J. Phys. Chem. Solids, 126, 189, 10.1016/j.jpcs.2018.11.009
Xu, 2019, Enhanced up-conversion luminescence and optical temperature sensing in graphitic C3N4 quantum dots grafted with BaWO4:Yb3+,Er3+ phosphors, J. Mater. Chem. C, 7, 6112, 10.1039/C9TC01351B
Wu, 2019, Optical temperature sensing properties of Er3+/Yb3+ co-doped LuVO4 up-conversion phosphors, Physica B, 561, 97, 10.1016/j.physb.2019.02.051
Pang, 2019, Calibration of optical temperature sensing of Ca1-xNaxMoO4:Yb3+,Er3+ with intense green up-conversion luminescence, J. Alloy. Comp., 771, 571, 10.1016/j.jallcom.2018.08.309
Liu, 2019, Dependence of upconversion emission and optical temperature sensing behavior on excitation power in Er3+/Yb3+ co-doped BaMoO4 phosphors, J. Lumin., 210, 119, 10.1016/j.jlumin.2019.01.065
He, 2019, The upconversion photoluminescence and temperature sensing abilities of Pb(Zn1/3Nb2/3)O3-9PbTiO3 crystals induced by Er3+/Yb3+ doping, J. Alloy. Comp., 782, 936, 10.1016/j.jallcom.2018.12.271
Liu, 2018, Color-tunable upconversion luminescence and multiple temperature sensing and optical heating properties of Ba3Y4O9:Er3+/Yb3+ phosphors, J. Phys. Chem. C, 122, 16289, 10.1021/acs.jpcc.8b04180
Cao, 2015, Multiple temperature-sensing behavior of green and red upconversion emissions from Stark sublevels of Er3+, Sensors, 15, 30981, 10.3390/s151229839
Zhang, 2019, Modulated up-conversion luminescence and low-temperature sensing of Gd3Ga5O12:Yb3+/Er3+ by incorporation of Fe3+ ions, J. Alloy. Comp., 781, 467, 10.1016/j.jallcom.2018.12.147
Zhang, 2019, Optical temperature sensing using upconversion luminescence in rare-earth ions doped Ca2Gd8(SiO4)6O2 phosphors, J. Alloy. Comp., 771, 838, 10.1016/j.jallcom.2018.09.022
Liu, 2016, Effect of the Yb3+ concentration in up-conversion and electrical properties of Ho3+/Yb3+ Co-doped (0.94Na0.5Bi0.5TiO3-0.06BaTiO3) ceramics, J. Electron. Mater., 45, 3473, 10.1007/s11664-016-4483-8
Chai, 2017, Upconversion luminescence and temperature-sensing properties of Ho3+/Yb3+-codoped ZnWO4 phosphors based on fluorescence intensity ratios, RSC Adv., 7, 40046, 10.1039/C7RA05846B
Li, 2016, Large electrostrain and high optical temperature sensitivity in BaTiO3-(Na0.5Ho0.5)TiO3 multifunctional ferroelectric ceramics, Dalton Trans., 45, 11733, 10.1039/C6DT01424K
Singh, 2007, Ho3+:TeO2 glass, a probe for temperature measurements, Sens. Actuators A Phys., 136, 173, 10.1016/j.sna.2006.10.045
Singh, 2007, Upconversion and optical thermometry in Ho3+:TeO2 glass, effect of addition of PbO2 and BaCO3, Appl. Phys. B, 86, 661, 10.1007/s00340-006-2505-6
Verma, 2012, Laser induced optical heating from Yb3+/Ho3+:Ca12Al14O33 and its applicability as a thermal probe, J. Quant. Spectrosc. Radiat. Transf., 113, 1594, 10.1016/j.jqsrt.2012.04.001
Qiang, 2019, Enhanced optical temperature sensing and upconversion emissions based on the Mn2+ codoped NaGdF4:Yb3+,Ho3+ nanophosphor, New J. Chem., 43, 5011, 10.1039/C8NJ05079A
Zhou, 2019, Excellent photoluminescence and temperature sensing properties in Ho3+/Yb3+ codoped (Y0.88La0.09Zr0.03)2O3 transparent ceramics, Ceram. Int., 45, 7696, 10.1016/j.ceramint.2019.01.070
Lojpur, 2013, Y2O3:Yb,Tm and Y2O3:Yb,Ho powders for low-temperature thermometry based on up-conversion fluorescence, Ceram. Int., 39, 1129, 10.1016/j.ceramint.2012.07.036
Zuo, 2016, High dielectric, piezoelectric, upconversion photoluminescence and low-temperature sensing properties in Ba0.7Sr0.3TiO3-BaZr0.2Ti0.8O3:Ho/Yb ceramics, J. Electron. Mater., 45, 970, 10.1007/s11664-015-4247-x
Pandey, 2013, Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor, Dalton Trans., 42, 11005, 10.1039/c3dt50592h
Dey, 2015, CaMoO4:Ho3+-Yb3+-Mg2+ upconverting phosphor for application in lighting devices and optical temperature sensing, Sens. Actuators B Chem., 210, 581, 10.1016/j.snb.2015.01.007
Xu, 2012, Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior, Opt. Express, 20, 18127, 10.1364/OE.20.018127
Zhou, 2014, Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4, J. Alloy. Comp., 588, 654, 10.1016/j.jallcom.2013.11.132
Hui, 2015, Bright green emission in Ho3+-Yb3+ Co-doped Bi1/2Na1/2TiO3 ferroelectric ceramics and the optical thermometry behavior, Ferroelectrics, 487, 133, 10.1080/00150193.2015.1071601
Cao, 2014, Up-conversion luminescence and optical thermometry characterization of Ho3+/Yb3+ co-doped SrBi4Ti4O15 ferroelectric ceramics, SCIENTIA SINICA Technologica, 44, 1254, 10.1360/N092014-00201
Wang, 2019, Investigation on the up-conversion luminescence and temperature sensing properties based on non-thermally coupled levels of rare earth ions doped Ba2In2O5 phosphor, J. Lumin., 206, 273, 10.1016/j.jlumin.2018.10.034
Wade, 1999, Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique, Rev. Sci. Instrum., 70, 4279, 10.1063/1.1150067
Rakov, 2014, Nd3+-Yb3+ doped powder for near-infrared optical temperature sensing, Opt. Lett., 39, 3767, 10.1364/OL.39.003767
Smith, 2009, Bioimaging: second window for in vivo imaging, Nat. Nanotechnol., 4, 710, 10.1038/nnano.2009.326
Ximendes, 2016, Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers, Nano Lett., 16, 1695, 10.1021/acs.nanolett.5b04611
Rai, 2006, Pr3+ doped lithium tellurite glass as a temperature sensor, Sens. Actuators B Chem., 128, 14, 10.1016/j.sna.2005.12.030
Ding, 2018, β-NaYF4:Yb3+/Er3+ nanocrystals embedded sol-gel glass ceramics for self-calibrated optical thermometry, Ceram. Int., 44, 14884, 10.1016/j.ceramint.2018.05.125
Xu, 2012, An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic, Sens. Actuators B Chem., 173, 250, 10.1016/j.snb.2012.07.009
Xu, 2013, Highly sensitive optical thermometry through thermally enhanced near infrared emissions from Nd3+/Yb3+ codoped oxyfluoride glass ceramic, Sens. Actuators B Chem., 178, 520, 10.1016/j.snb.2012.12.050
Xu, 2015, Multifunctional nanoparticles based on the Nd3+/Yb3+ codoped NaYF4, Opt. Lett., 40, 5678, 10.1364/OL.40.005678
Shi, 2019, Highly sensitive up-conversion thermometric performance in Nd3+ and Yb3+ sensitized Ba4La2Ti4Nb6O30 based on near-infrared emissions, J. Phys. Chem. Solids, 124, 130, 10.1016/j.jpcs.2018.09.013
Zhao, 2018, Lead-free rare earth-modified (K0.44Na0.52Li0.04)(Nb0.86Ta0.1Sb0.04)O3 ceramics: phase structure, electrical and photoluminescence properties, J. Mater. Sci. Mater. Electron., 29, 4791, 10.1007/s10854-017-8435-8
Li, 2012, Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3, Opt. Commun., 285, 1925, 10.1016/j.optcom.2011.12.075
Zhou, 2014, Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles, Opt. Lett., 39, 6687, 10.1364/OL.39.006687
Soni, 2015, Stark sublevels in Tm3+-Yb3+ codoped Na2Y2B2O7 nanophosphor for multifunctional applications, RSC Adv., 5, 34999, 10.1039/C4RA15891A
Rocha, 2013, Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles, ACS Nano, 7, 1188, 10.1021/nn304373q
Wang, 2013, Optical temperature sensing of NaYbF4:Tm3+@SiO2 core-shell micro-particles induced by infrared excitation, Opt. Express, 21, 21596, 10.1364/OE.21.021596
Pereira, 2015, Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers, Sens. Actuators B Chem., 213, 65, 10.1016/j.snb.2015.01.136
Suo, 2017, All-in-one thermometer-heater up-converting platform YF3:Yb3+,Tm3+ operating in the first biological window, J. Mater. Chem. C, 5, 1501, 10.1039/C6TC05449H
Xing, 2015, Effect of crystallinity on the optical thermometry sensitivity of Tm3+/Yb3+ codoped LiNbO3 crystal, Sens. Actuators B Chem., 221, 458, 10.1016/j.snb.2015.06.132
Wang, 2019, Investigation for the upconversion luminescence and temperature sensing mechanism based on BiPO4:Yb3+,RE3+ (RE3+ = Ho3+, Er3+ and Tm3+), J. Alloy. Comp., 772, 371, 10.1016/j.jallcom.2018.09.070
Lu, 2019, Ultranarrow NIR bandwidth and temperature sensing of YOF:Yb3+/Tm3+ phosphor in low temperature range, J. Lumin., 206, 613, 10.1016/j.jlumin.2018.10.091
Wu, 2019, Intense near-infrared emission, upconversion processes and temperature sensing properties of Tm3+ and Yb3+ co-doped double perovskite Gd2ZnTiO6 phosphors, J. Alloy. Comp., 804, 486, 10.1016/j.jallcom.2019.07.036
Li, 2008, Significant temperature effects on up-conversion emissions of Nd3+:Er3+:Yb3+ co-doped borosilicate glass and its thermometric application, Sens. Actuators B Chem., 134, 313, 10.1016/j.snb.2008.05.003
Pandey, 2012, Colour emission tunability in Ho3+-Tm3+-Yb3+ co-doped Y2O3 upconverted phosphor, Appl. Phys. B, 109, 611, 10.1007/s00340-012-5224-1
Kumar Rai, 2013, Photoluminescence study of Y2O3:Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications, J. Appl. Phys., 113, 083104, 10.1063/1.4793265
Chen, 2019, Yb3+/Tb3+/Ho3+: phosphate nanophase embedded glass ceramics: enhanced upconversion emission and temperature sensing behavior, J. Mater. Sci. Mater. Electron., 30, 778, 10.1007/s10854-018-0347-8
Pang, 2018, Controllable upconversion luminescence and temperature sensing behavior in NaGdF4:Yb3+/Ho3+/Ce3+ nano-phosphors, Mater. Res. Express, 5, 015049, 10.1088/2053-1591/aaa683
Sun, 2019, Designing down-and up-conversion dual-mode luminescence of lanthanide-doped phosphors for temperature sensing, J. Lumin., 206, 176, 10.1016/j.jlumin.2018.10.058
Han, 2019, Optical temperature sensing based on thermal, non-thermal coupled levels and tunable luminescent emission colors of Er3+/Tm3+/Yb3+ tri-doped Y7O6F9 phosphor, J. Alloy. Comp., 786, 770, 10.1016/j.jallcom.2019.02.047
Lei, 2018, Intense near-infrared-II luminescence from NaCeF4:Er/Yb nanoprobes for in vitro bioassay and in vivo bioimaging, Chem. Sci., 9, 4682, 10.1039/C8SC00927A
Mueller, 2008, Exposure modeling of engineered nanoparticles in the environment, Environ. Sci. Technol., 42, 4447, 10.1021/es7029637
Gnach, 2015, Upconverting nanoparticles: assessing the toxicity, Chem. Soc. Rev., 44, 1561, 10.1039/C4CS00177J
Nadort, 2016, Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties, Nanoscale, 8, 13099, 10.1039/C5NR08477F