Automated cropland mapping of continental Africa using Google Earth Engine cloud computing

ISPRS Journal of Photogrammetry and Remote Sensing - Tập 126 - Trang 225-244 - 2017
Jun Xiong1,2, Prasad S. Thenkabail1, Murali K. Gumma3, Pardhasaradhi Teluguntla1,2, Justin Poehnelt1, Russell G. Congalton4, Kamini Yadav4, David Thau5
1U.S. Geological Survey (USGS), 2255, N. Gemini Drive, Flagstaff, AZ 86001, USA
2Bay Area Environmental Research Institute (BAERI), 596 1st St West Sonoma, CA 95476, USA
3International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
4University of New Hampshire, NH, USA
5Google, MountainView, CA, USA

Tài liệu tham khảo

Arino, 2007, GlobCover: ESA service for global land cover from MERIS, 2412 Bégué, 2014, Differences between cropland and rangeland MODIS phenology (start-of-season) in Mali, Int. J. Appl. Earth Obser. Geoinform., 31, 167, 10.1016/j.jag.2014.03.024 Biradar, 2009, A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing, Int. J. Appl. Earth Obser. Geoinform., 11, 114, 10.1016/j.jag.2008.11.002 Chamberlin, 2014, Scarcity amidst abundance? Reassessing the potential for cropland expansion in Africa, Food Policy, 48, 51, 10.1016/j.foodpol.2014.05.002 Chen, 2015, Global land cover mapping at 30m resolution: a POK-based operational approach, ISPRS J. Photogramm. Remote Sens., 103, 7, 10.1016/j.isprsjprs.2014.09.002 Clover, 2010, Food security in sub-Saharan Africa, Afr. Sec. Stud., 12, 5 Congalton, 2014, Global land cover mapping: a review and uncertainty analysis, Remote Sens., 6, 12070, 10.3390/rs61212070 Conrad, 2016, Analysing irrigated crop rotation patterns in arid Uzbekistan by the means of remote sensing: a case study on post-Soviet agricultural land use, J. Arid Environ., 124, 150, 10.1016/j.jaridenv.2015.08.008 Congalton, 2009 DeFries, 2000, Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data, Remote Sens. Environ., 74, 503, 10.1016/S0034-4257(00)00142-5 Congalton, 2015, Assessing positional and thematic accuracies of maps generated from remotely sensed data, vol. I, 583 Defourny, 2009, The first 300 m global land cover map for 2005 using ENVISAT MERIS time series: A product of the GlobCover system, vol. 48 Deng, 2013, The use of single-date MODIS imagery for estimating large-scale urban impervious surface fraction with spectral mixture analysis and machine learning techniques, ISPRS J. Photogramm. Remote Sens., 86, 100, 10.1016/j.isprsjprs.2013.09.010 Dheeravath, 2010, Irrigated areas of India derived using MODIS 500 m time series for the years 2001–2003, ISPRS J. Photogramm. Remote Sens., 65, 42, 10.1016/j.isprsjprs.2009.08.004 Ding, 2014, Temporal dynamics of spatial heterogeneity over cropland quantified by time-series NDVI, near infrared and red reflectance of Landsat 8 OLI imagery, Int. J. Appl. Earth Obser. Geoinform., 30, 139, 10.1016/j.jag.2014.01.009 Dong, 2015, Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms, Remote Sens. Environ., 160, 99, 10.1016/j.rse.2015.01.004 Dorward, A., Chirwa, E., 2010. A Review of Methods for Estimating Yield and Production Impacts. Duro, 2012, A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery, Remote Sens. Environ., 118, 259, 10.1016/j.rse.2011.11.020 Egorov, 2015, Image interpretation-guided supervised classification using nested segmentation, Remote Sens. Environ., 165, 135, 10.1016/j.rse.2015.04.022 Esch, 2014, Combined use of multi-seasonal high and medium resolution satellite imagery for parcel-related mapping of cropland and grassland, Int. J. Appl. Earth Obser. Geoinform., 28, 230, 10.1016/j.jag.2013.12.007 FAO, I., Fischer, G., Nachtergaele, F., Prieler, S., Velthuizen, H.T.V., Verelst, L., Wiberg, D., 2012. Global Agro-ecological Zones (GAEZ v3.0). FAO, 2013. Rome. FAOSTAT database. Food and Agriculture Organization of the United Nations, Rome, Italy. Foody, 2010, Assessing the accuracy of land cover change with imperfect ground reference data, Remote Sens. Environ., 114, 2271, 10.1016/j.rse.2010.05.003 Friedl, 1997, Decision tree classification of land cover from remotely sensed data, Remote Sens. Environ., 61, 399, 10.1016/S0034-4257(97)00049-7 Friedl, 2002, Global land cover mapping from MODIS: algorithms and early results, Remote Sens. Environ., 287, 10.1016/S0034-4257(02)00078-0 Fritz, 2009, Geo-Wiki.Org: the use of crowdsourcing to improve global land cover, Remote Sens., 1, 345, 10.3390/rs1030345 Fritz, 2008, Identifying and quantifying uncertainty and spatial disagreement in the comparison of Global Land Cover for different applications, Global Change Biol., 14, 1057, 10.1111/j.1365-2486.2007.01519.x Fritz, 2010, Comparison of global and regional land cover maps with statistical information for the agricultural domain in Africa, Int. J. Remote Sens., 31, 2237, 10.1080/01431160902946598 Fritz, 2011, Highlighting continued uncertainty in global land cover maps for the user community, Environ. Res. Lett., 6, 044005, 10.1088/1748-9326/6/4/044005 Fritz, 2011, Cropland for sub-Saharan Africa: a synergistic approach using five land cover data sets, Geophys. Res. Lett., 38, 10.1029/2010GL046213 Funk, C.C., Peterson, P.J., Landsfeld, M.F., Pedreros, D.H., Verdin, J.P., Rowland, J.D., Romero, B.E., Husak, G.J., Michaelsen, J.C., Verdin, A.P., 2014. A Quasi-global Precipitation Time Series for Drought Monitoring. US Geological Survey Data Series 832. Gerland, 2014, World population stabilization unlikely this century, Science, 346, 234, 10.1126/science.1257469 Giri, 2005, A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets, Remote Sens. Environ., 94, 123, 10.1016/j.rse.2004.09.005 Gong, 2013, Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data, Int. J. Remote Sens., 34, 2607, 10.1080/01431161.2012.748992 Gumma, 2014, Mapping seasonal rice cropland extent and area in the high cropping intensity environment of Bangladesh using MODIS 500m data for the year 2010, ISPRS J. Photogramm. Remote Sens., 91, 98, 10.1016/j.isprsjprs.2014.02.007 Haack, 2014, Remote sensing-derived national land cover land use maps: a comparison for Malawi, Geocarto Int., 30, 270, 10.1080/10106049.2014.952355 Hansen, 2013, High-resolution global maps of 21st-century forest cover change, Science, 342, 850, 10.1126/science.1244693 Hansen, 2010, A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products, Int. J. Remote Sens., 21, 1365, 10.1080/014311600210218 Helmholz, 2014, Semi-automatic verification of cropland and grassland using very high resolution mono-temporal satellite images, ISPRS J. Photogramm. Remote Sens., 97, 204, 10.1016/j.isprsjprs.2014.09.008 Hentze, 2016, Evaluating crop area mapping from MODIS time-series as an assessment tool for Zimbabwes fast track land reform programme, PLoS ONE, 11, e0156630, 10.1371/journal.pone.0156630 Herold, 2008, Some challenges in global land cover mapping: an assessment of agreement and accuracy in existing 1 km datasets, Remote Sens. Environ., 112, 2538, 10.1016/j.rse.2007.11.013 Herold, 2006, A joint initiative for harmonization and validation of land cover datasets, IEEE Trans. Geosci. Remote Sens., 44, 1719, 10.1109/TGRS.2006.871219 Jamali, 2014, Automated mapping of vegetation trends with polynomials using NDVI imagery over the Sahel, Remote Sens. Environ., 141, 79, 10.1016/j.rse.2013.10.019 Jayne, 2014, Land pressures, the evolution of farming systems, and development strategies in Africa: a synthesis, Food Policy, 48, 1, 10.1016/j.foodpol.2014.05.014 Jeganathan, 2014, Remotely sensed trends in the phenology of northern high latitude terrestrial vegetation, controlling for land cover change and vegetation type, Remote Sens. Environ., 143, 154, 10.1016/j.rse.2013.11.020 Kalensky, 1998, AFRICOVER land cover database and map of Africa, Can. J. Remote Sens., 24, 292, 10.1080/07038992.1998.10855250 Kidane, 2012, Vegetation dynamics, and land use and land cover change in the Bale Mountains, Ethiopia, Environ. Monit. Assess., 184, 7473, 10.1007/s10661-011-2514-8 Kruger, 2006, Observed trends in daily precipitation indices in South Africa: 1910–2004, Int. J. Climatol., 26, 2275, 10.1002/joc.1368 Kummu, 2012, Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use, Sci. Total Environ., 438, 477, 10.1016/j.scitotenv.2012.08.092 Lambert, 2016, Cropland mapping over Sahelian and Sudanian agrosystems: a knowledge-based approach using PROBA-V time series at 100-m, Remote Sens., 8, 232, 10.3390/rs8030232 Lary, 2016, Machine learning in geosciences and remote sensing, Geosci. Front., 7, 3, 10.1016/j.gsf.2015.07.003 Latham, J., Cumani, R., Rosati, I., Bloise, M., 2014. Global Land Cover Share (GLC-SHARE) Database Beta-release Version 1.0-2014. FAO, Rome. Leroux, 2014, How reliable is the MODIS land cover product for crop mapping Sub-Saharan agricultural landscapes?, Remote Sens., 6, 8541, 10.3390/rs6098541 Li, 2003, Parallel netCDF: a high-performance scientific I/O interface Lobell, 2004, Cropland distributions from temporal unmixing of MODIS data, Remote Sens. Environ., 93, 412, 10.1016/j.rse.2004.08.002 Lobell, 2008, Prioritizing climate change adaptation needs for food security in 2030, Science, 319, 607, 10.1126/science.1152339 McCallum, 2006, A spatial comparison of four satellite derived 1km global land cover datasets, Int. J. Appl. Earth Obser. Geoinform., 8, 246, 10.1016/j.jag.2005.12.002 Messerli, 2009, Use of sensitivity analysis to evaluate key factors for improving slash-and-burn cultivation systems on the eastern escarpment of Madagascar, Mount. Res. Dev., 20, 32, 10.1659/0276-4741(2000)020[0032:UOSATE]2.0.CO;2 Motha, 1980, Precipitation patterns in West Africa, Mon. Weather Rev., 2, 1567, 10.1175/1520-0493(1980)108<1567:PPIWA>2.0.CO;2 Mountrakis, 2011, Support vector machines in remote sensing: a review, ISPRS J. Photogramm. Remote Sens., 66, 247, 10.1016/j.isprsjprs.2010.11.001 Müller, 2015, Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape, Remote Sens. Environ., 156, 490, 10.1016/j.rse.2014.10.014 Nemani, 2011, Collaborative supercomputing for global change science, Eos, Trans. Am. Geophys. Union, 92, 109, 10.1029/2011EO130001 Ozdogan, 2008, A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: an application example in the continental US, Remote Sens. Environ., 112, 3520, 10.1016/j.rse.2008.04.010 Pan, 2015, Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data, Int. J. Appl. Earth Obser. Geoinform., 34, 188, 10.1016/j.jag.2014.08.011 Pantazi, 2016, Wheat yield prediction using machine learning and advanced sensing techniques, Comput. Electron. Agric., 121, 57, 10.1016/j.compag.2015.11.018 PeñArancibia, 2016, Assessing irrigated agriculture’s surface water and groundwater consumption by combining satellite remote sensing and hydrologic modelling, Sci. Total Environ., 542, 372, 10.1016/j.scitotenv.2015.10.086 Pittman, 2010, Estimating global cropland extent with multi-year MODIS data, Remote Sens., 2, 1844, 10.3390/rs2071844 Portmann, 2010, MIRCA2000—global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling, Global Biogeochem. Cycles, 24, 1, 10.1029/2008GB003435 Qiu, 2014, A new methodology to map double-cropping croplands based on continuous wavelet transform, Int. J. Appl. Earth Obser. Geoinform., 26, 97, 10.1016/j.jag.2013.05.016 Radoux, 2014, Automated training sample extraction for global land cover mapping, Remote Sens., 6, 3965, 10.3390/rs6053965 Rembold, 2000, Use of aerial photographs, Landsat TM imagery and multidisciplinary field survey for land-cover change analysis in the lakes region (Ethiopia), Int. J. Appl. Earth Obser. Geoinform., 2, 181, 10.1016/S0303-2434(00)85012-6 Salmon, 2015, Global rain-fed, irrigated, and paddy croplands: a new high resolution map derived from remote sensing, crop inventories and climate data, Int. J. Appl. Earth Obser. Geoinform., 38, 321, 10.1016/j.jag.2015.01.014 See, 2013, Comparing the quality of crowdsourced data contributed by expert and non-experts, PLoS ONE, 8, e69958, 10.1371/journal.pone.0069958 Shalaby, 2007, Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt, Appl. Geogr., 27, 28, 10.1016/j.apgeog.2006.09.004 Shao, 2012, Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points, ISPRS J. Photogramm. Remote Sens., 70, 78, 10.1016/j.isprsjprs.2012.04.001 Sharma, 2013, Decision tree approach for classification of remotely sensed satellite data using open source support, J. Earth Syst. Sci., 122, 1237, 10.1007/s12040-013-0339-2 Soulard, C.E., Acevedo, W., Auch, R.F., Sohl, T.L., Drummond, M.A., Sleeter, B.M., Sorenson, D.G., Kambly, S., Wilson, T.S., Taylor, J.L., et al., 2014, Land Cover Trends Dataset, 1973–2000: U.S. Geological Survey Data Series 844, 10 p., https://dx.doi.org/10.3133/ds844. Tateishi, 2014, Production of global land cover DataGLCNMO2008, J. Geogr. Geol., 6, 99 Tatsumi, 2015, Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data, Comput. Electron. Agric., 115, 171, 10.1016/j.compag.2015.05.001 Teluguntla, 2015, Mapping flooded rice paddies using time series of modis imagery in the Krishna River Basin, India, Remote Sens., 7, 8858, 10.3390/rs70708858 Teluguntla, 2015, Global food security support analysis data at nominal 1km (GFSAD1km) derived from remote sensing in support of food security in the twenty-first century: current achievements and future possibilities, 131 Teluguntla, 2017, Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000–2015) data, International Journal of Digital Earth, 10.1080/17538947.2016.1267269 Thenkabail, 2007, Spectral matching techniques to determine historical land-use/land-cover (LULC) and irrigated areas using time-series 0.1-degree AVHRR Pathfinder datasets, Photogramm. Eng. Remote Sens., 73, 1029 Thenkabail, 2012, An automated cropland classification algorithm (ACCA) for Tajikistan by combining Landsat, MODIS, and secondary data, Remote Sens., 4, 2890, 10.3390/rs4102890 Thenkabailc, 2007, Sub-pixel area calculation methods for estimating irrigated areas, Sensors, 7, 2519, 10.3390/s7112519 Thenkabail, 2009, Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium, Int. J. Remote Sens., 30, 10.1080/01431160802698919 Tsendbazar, 2015, Assessing global land cover reference datasets for different user communities, ISPRS J. Photogramm. Remote Sens., 103, 93, 10.1016/j.isprsjprs.2014.02.008 Vancutsem, 2012, Harmonizing and combining existing land cover/land use datasets for cropland area monitoring at the African continental scale, Remote Sens., 5, 19, 10.3390/rs5010019 Vintrou, 2012, Crop area mapping in West Africa using landscape stratification of MODIS time series and comparison with existing global land products, Int. J. Appl. Earth Obser. Geoinform., 14, 83, 10.1016/j.jag.2011.06.010 Waldner, 2015, Automated annual cropland mapping using knowledge-based temporal features, ISPRS J. Photogramm. Remote Sens., 110, 1, 10.1016/j.isprsjprs.2015.09.013 Waldner, 2016, Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity, Int. J. Remote Sens., 37, 3196, 10.1080/01431161.2016.1194545 Wang, 2015, Mapping global land cover in 2001 and 2010 with spatial-temporal consistency at 250m resolution, ISPRS J. Photogramm. Remote Sens., 103, 38, 10.1016/j.isprsjprs.2014.03.007 Were, 2013, Remotely sensing the spatial and temporal land cover changes in Eastern Mau forest reserve and Lake Nakuru drainage basin, Kenya, Appl. Geogr., 41, 75, 10.1016/j.apgeog.2013.03.017 Wu, 2014, Automated cropland classification algorithm (ACCA) for California using multi-sensor remote sensing, Photogramm. Eng. Remote Sens., 80, 81, 10.14358/PERS.80.1.81 Yan, 2014, Automated crop field extraction from multi-temporal Web Enabled Landsat Data, Remote Sens. Environ., 144, 42, 10.1016/j.rse.2014.01.006 Zhang, 2015, Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data, ISPRS J. Photogramm. Remote Sens., 106, 157, 10.1016/j.isprsjprs.2015.05.011 Zhang, 2011 Zhao, 2014, Towards a common validation sample set for global land-cover mapping, Int. J. Remote Sens., 35, 4795, 10.1080/01431161.2014.930202 Zhong, 2014, Efficient corn and soybean mapping with temporal extendability: a multi-year experiment using Landsat imagery, Remote Sens. Environ., 140, 1, 10.1016/j.rse.2013.08.023 Zhou, 2016, Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images, Int. J. Appl. Earth Obser. Geoinform., 46, 1, 10.1016/j.jag.2015.11.001 Zucca, 2015, Assessing the effectiveness of land restoration interventions in dry lands by multitemporal remote sensing—a case study in ouled DLIM (Marrakech, Morocco), Land Degrad. Dev., 26, 80, 10.1002/ldr.2307