Influence of carbon nanotubes on chlorophyll fluorescence parameters of green algae Chlamydomonas reinhardtii
Pleiades Publishing Ltd - 2010
Tóm tắt
It has been shown that carbon nanotubes are capable of decreasing the development speed of Chlamydomonas reinhardtii algae culture and significantly changing the parameters of chlorophyll fluorescence that characterize the prime processes of light energy storage throughout photosynthesis. The quantum yield reduction of photochemical light energy transformation during photosynthesis and the relative speed of noncycle electron transfer calculated using the fluorescence parameters have been observed. The inhibition of the electrochemical proton gradient involved in ATP synthesis has been determined using delayed fluorescence. A conclusion on the prospects of implementing highly sensitive fluorescent methods for evaluating the toxic effect of modern nonmaterials on water objects is made.
Từ khóa
Tài liệu tham khảo
T. K. Antal, E. E. Graevskaya, D. N. Matorin, E. N. Voronova, S. I. Pogosyan, T. E. Krendeleva, and A. B. Rubin, “Fluorescence Study of the Effect of Mercuric Chloride and Methylmercury Chloride on the Photosynthetic Activity of the Diatom Thalassiosira weissflogii[,” Biofizika 49(1), 72–78 (2004) [Biophysics 49 (1), 66–72 (2004)].
D. N. Matorin and P. S. Venediktov, “Luminescence of Chlorophyll in Micro Algae Cultures and Natural Populations of Phytoplankton,” Itogi Nauki Tekh., Ser.: Biofiz. 40 49–100 (1990).
D. N. Matorin, S. I. Pogosyan, and A. V. Smurov, “Instrumental Assessment of Environmental Quality Using Phototrophic Organisms,” in The Biological Control of the Environment: Bioindication and Biotesting (A Textbook), Ed. by O. P. Melekhova and E. I. Egorova (Akademiya, Moscow, 2007), pp. 243–246 [in Russian].
A. B. Rubin, “Photosynthesis Biophysics and Methods of Ecological Monitoring,” Tekhnol. Zhivykh Sist. 2, 47–68 (2005).
A Manual to Biotesting Determination of the Toxicity of Water, Bottom Sediments, Contaminants, and Drilling Fluids (National Information Agency “Natural Resources” (NIA-Priroda), Moscow, 2002), p. 117 [in Russian].
O. F. Filenko, in Water Toxicology (Moscow State University, Moscow, 1988), p. 156 [in Russian].
J. Amesz and H. J. van Gorkom, “Delayed Fluorescence in Photosynthesis,” Annu. Rev. Plant Physiol. 29(1), 47–66 (1978).
W. Brack and H. Frank, “Chlorophyll Fluorescence: A Tool for the Investigation of Toxic Effects in the Photosynthetic Apparatus,” Ecotoxicol. Environ. Saf. 140(1–2), 34–41 (1998).
M. Crane and R. D. Handy, An Assessment of Regulatory Testing Strategies and Methods for Characterizing the Ecotoxicological Hazards of Nanomaterials (Report for Defra (Department for Environment, Food, and Rural Affairs), London, 2007).
Guzman K. A. Denphy, M. R. Taylor, and J. F. Banfield, “Environmental Risks of Nanotechnology: National Nanotechnology Initiative Funding, 2000–2004,” Environ. Sci. Technol. 40, 1401–1407 (2006).
B. Genty, J. M. Briantais, and N. R. Baker, “The Relationship between Quantum Yield of Photosynthetic Electron Transport and Quenching of Chlorophyll Fluorescence,” Biochim. Biophys. Acta 990, 87–92 (1989).
E. H. Harris, The Clamydomonas: Sourcebook (Academic, San Diego, CA, United States 1989).
O. Herlory, P. Richard, and G. F. Blanchard, “Methodology of Light Response Curves: Application of Chlorophyll Fluorescence to Microphytobenthic Biofilms,” Mar. Biol. (Berlin) 153, 91–101 (2007).
K. Hund-Rinke and M. Simon, “Ecotoxic Effect of Photocatalytic Active Nanoparticles TiO2 on Algae and Daphnids,” Environ. Sci. Pollut. Res. Int. 13(4), 1–8 (2006).
A. D. Jassby and T. Platt, “Mathematical Formulation of the Relationship between Photosynthesis and Light for Phytoplankton,” Limnol. Oceanogr. 21, 540–547 (1976).
S. Kang, M. Pinault, L. D. Pfefferle, and M. Elimelech, “Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity,” Langmuir 3, 8670–8673 (2007).
H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature (London) 318, 162–318 (1985).
D. Lekas, “Analysis of Nanotechnology from an Industrial Ecology Perspective: Part II. Substance Flow Analysis of Carbon Nanotubes” (Project on Emerging Nanotechnologies Report, Woodrow Wilson International Centre for Scholars, Washington, 2005).
S. Lippemeier, P. Harting, and F. Colijn, “Direct Impact of Silicate on the Photosynthetic Performance of the Diatom Thalassiosira Weissflogii Assessed by On- and Off-Line PAM Fluorescence Measurements,” J. Plankton Res. 21, 269–283 (1999).
J. Luo, “Toxicity and Bioaccumulation of Nanomaterial in Aquatic Species,” J. U.S. Stockholm Junior Water Prize (2007).
D. Y. Lyon, L. Brunet, G. W. Hinkal, M. R. Wiesner, and P. J. Alvarez, “Antibacterial Activity of Fullerene Water Suspensions (nC60) Is Not Due to ROS-Mediated Damage,” Nano Lett. 8(5), 1539–1543 (2008).
H. L. MacInture, T. Kana, T. Anning, and R. Geider, “Photoacclimation of Photosynthesis Irradiance Response Curves and Photosynthetic Pigments in Microalgae and Cyanobacteria.” J. Phycol. 38, 17–38 (2002).
D. N. Matorin, T. K. Antal, M. Ostrowska, A. B. Rubin, D. Ficek, and R. Majchrowski, “Chlorophyll Fluorimetry as a Method for Studying Light Absorption by Photosynthetic Pigments in Marine Algae,” Oceanologia 46(4), 519–531 (2004).
“Nanoscience and Nanotechnologies: Opportunities and Uncertainties,” in Two Year Review of Progress on Government Actions: Joint Academies’ Response to the Council for Science and Technology’s Call for Evidence (RS Policy Document 35/06, The Royal Society, London, 2005).
H. D. Nilsen, L. S. Berry, V. Stone, T. R. Burridge, and T. F. Fernandes, “Interactions between Carbon Black Nanoparticles and the Brown Algae Fucus serratus: Inhibition of Fertilization and Zygotic Development,” Nanotoxicology 2, 88–97 (2008).
T. Platt, K. L. Denman, and A. D. Jassby, “Modeling the Productivity of Phytoplankton,” in The Sea, Ed. by E. D. Goldberg (Wiley, New York, 1977), Vol. 6, pp. 807–856.
R. Qiao and P. C. Ke, “Lipid-Carbon Nanotube Self-Assembly in Aqueous Solution,” J. Am. Chem. Soc. 128, 3656 (2006).
R. Qiao, A. P. Roberts, A. S. Mount, S. J. Klaine, and P. C. Ke, “Translocation of C60 and Its Derivatives across a Lipid Bilayer,” Nano Lett. 7, 614–619 (2007).
U. Schreiber, “Pulse-Amplitude-Modulation (PAM) Fluorometry and Saturation Pulse Method: An Overview,” in Chlorophyll Fluorescence: A Signature of Photosynthesis, Ed. by G. Papageorgiou and Govindjee (Springer, Dordrecht, The Netherlands, 2004), pp. 279–319.
U. Schreiber, J. Muller, A. Haugg, and R. Gademann, “New Type Dual-Channel PAM Chlorophyll Fluorometer for Highly Sensitive Water Toxicity Biotest,” Photosynth. Res. 74, 317–330 (2002).
J. Serodio, S. Vieira, S. Cruz, and F. Barroso, “Short-Team Variability in the Photosynthetic Activity of Microphytobenthos as Detected by Measuring Rapid Light Curves Using Variable Fluorescence,” Mar. Biol. (Berlin) 146, 903–914 (2005).
R. F. Service, “Superstrong Nanotubes Show They Are Smart, Too,” Science (Washington) 281, 940–942 (1998).
A. A. Shvedova, E. R. Kisin, R. Mercer, A. R. Murray, V. J. Johnson, A. I. Potapovich, Y. Y. Tyurina, O. Gorelik, S. Arepalli, D. Schwegler-Berry, A. F. Hubbs, J. Antonini, D. E. Evans, B.-K. Ku, D. Ramsey, A. Maynard, V. E. Kagan, V. Castranova, and P. Baron, “Unusual Inflammatory and Fibrogenic Pulmonary Responses to Single-Walled Carbon Nanotubes in Mice,” Am. J. Physiol.: Lung Cell. Mol. Physiol. 289, 698–708 (2005).
A. J. White and C. Critchley, “Rapid Light Curves: A New Fluorescence Method to Assess the State of the Photosynthetic Apparatus,” Photosynth. Res. 59, 63–72 (1999).