Locus of control moderates the association of COVID-19 stress and general mental distress: results of a Norwegian and a German-speaking cross-sectional survey
Tóm tắt
An internal locus of control (LoC I) refers to the belief that the outcome of events in one’s life is contingent upon one’s actions, whereas an external locus of control (LoC E) describes the belief that chance and powerful others control one’s life. This study investigated whether LoC I and LoC E moderated the relationship between COVID-19 stress and general mental distress in the general population during the early months of the COVID-19 pandemic. This cross-sectional survey study analysed data from a Norwegian (n = 1225) and a German-speaking sample (n = 1527). We measured LoC with the Locus of Control-4 Scale (IE-4), COVID-19 stress with a scale developed for this purpose, and mental distress with the Patient Health Questionnaire 4 (PHQ-4). Moderation analyses were conducted using the PROCESS macro for SPSS. The association between COVID-19 stress and general mental distress was strong (r = .61 and r = .55 for the Norwegian and the German-speaking sample, respectively). In both samples, LoC showed substantial moderation effects. LoC I served as a buffer (p < .001), and LoC E exacerbated (p < .001) the relation between COVID-19 stress and general mental distress. The data suggest that the COVID-19 pandemic is easier to bear for people who, despite pandemic-related strains, feel that they generally have influence over their own lives. An external locus of control, conversely, is associated with symptoms of depression and anxiety. The prevention of mental distress may be supported by enabling a sense of control through citizen participation in policy decisions and transparent explanation in their implementation.
Tài liệu tham khảo
Arora T, Grey I, Östlundh L, Lam KBH, Omar OM, Arnone D. The prevalence of psychological consequences of COVID-19: a systematic review and meta-analysis of observational studies. J Health Psychol. 2020:1–20. https://doi.org/10.1177/1359105320966639.
Bareeqa SB, Ahmed SI, Samar SS, Yasin W, Zehra S, Monese GM, et al. Prevalence of depression, anxiety and stress in China during COVID-19 pandemic: a systematic review with meta-analysis. Int J Psychiatry Med. 2020;56(4):1–18. https://doi.org/10.1177/0091217420978005.
Bueno-Notivol J, Gracia-García P, Olaya B, Lasheras I, López-Antón R, Santabárbara J. Prevalence of depression during the COVID-19 outbreak: a meta-analysis of community-based studies. Int J Clin Health Psychol. 2021;21(1):100196. https://doi.org/10.1016/j.ijchp.2020.07.007.
Luo M, Guo L, Yu M, Jiang W, Wang H. The psychological and mental impact of coronavirus disease 2019 (COVID-19) on medical staff and general public - a systematic review and meta-analysis. Psychiatry Res. 2020;291:113190. https://doi.org/10.1016/j.psychres.2020.113190.
Salari N, Hosseinian-Far A, Jalali R, Vaisi-Raygani A, Rasoulpoor S, Mohammadi M, et al. Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: a systematic review and meta-analysis. Glob Health. 2020;16(1):57. https://doi.org/10.1186/s12992-020-00589-w.
Wang Y, Kala MP, Jafar TH. Factors associated with psychological distress during the coronavirus disease 2019 (COVID-19) pandemic on the predominantly general population: a systematic review and meta-analysis. PLoS One. 2021;15(12):e0244630. https://doi.org/10.1371/journal.pone.0244630.
Wu T, Jia X, Shi H, Niu J, Yin X, Xie J, et al. Prevalence of mental health problems during the COVID-19 pandemic: a systematic review and meta-analysis. J Affect Disord. 2021;281:91–8. https://doi.org/10.1016/j.jad.2020.11.117.
Xiong J, Lipsitz O, Nasri F, Lui LMW, Gill H, Phan L, et al. Impact of COVID-19 pandemic on mental health in the general population: a systematic review. J Affect Disord. 2020;277:55–64. https://doi.org/10.1016/j.jad.2020.08.001.
Asmundson GJG, Taylor S. Coronaphobia: fear and the 2019-nCoV outbreak. J Anxiety Disord. 2020;70:102196. https://doi.org/10.1016/j.janxdis.2020.102196.
Fiorillo A, Gorwood P. The consequences of the COVID-19 pandemic on mental health and implications for clinical practice. Eur Psychiatry. 2020;63(1):e32. https://doi.org/10.1192/j.eurpsy.2020.35.
Ransing R, Ramalho R, Orsolini L, Adiukwu F, Gonzalez-Diaz JM, Larnaout A, et al. Can COVID-19 related mental health issues be measured? Brain Behav Immun. 2020;88:32–4. https://doi.org/10.1016/j.bbi.2020.05.049.
Schnell T, Krampe H. Meaning in life and self-control buffer stress in times of COVID-19: moderating and mediating effects with regard to mental distress. Front Psychiatry. 2020;11:582352. https://doi.org/10.3389/fpsyt.2020.582352.
Ahorsu DK, Lin C-Y, Imani V, Saffari M, Griffiths MD, Pakpour AH. The fear of COVID-19 scale: development and initial validation. Int J Ment Heal Addict. 2020:1–9. https://doi.org/10.1007/s11469-020-00270-8.
Lee SA. Coronavirus anxiety scale: a brief mental health screener for COVID-19 related anxiety. Death Stud. 2020;44(7):393–401. https://doi.org/10.1080/07481187.2020.1748481.
Sakib N, Bhuiyan AKMI, Hossain S, Al Mamun F, Hosen I, Abdullah AH, et al. Psychometric validation of the Bangla fear of COVID-19 scale: confirmatory factor analysis and Rasch analysis. Int J Ment Heal Addict. 2020. https://doi.org/10.1007/s11469-020-00289-x.
Satici B, Gocet-Tekin E, Deniz ME, Satici SA. Adaptation of the fear of COVID-19 scale: its association with psychological distress and life satisfaction in Turkey. Int J Ment Heal Addict. 2020. https://doi.org/10.1007/s11469-020-00294-0.
Taylor S, Landry CA, Paluszek MM, Fergus TA, McKay D, Asmundson GJG. Development and initial validation of the COVID stress scales. J Anxiety Disord. 2020;72:102232. https://doi.org/10.1016/j.janxdis.2020.102232.
Zhao X, Lan M, Li H, Yang J. Perceived stress and sleep quality among the non-diseased general public in China during the 2019 coronavirus disease: a moderated mediation model. Sleep Med. 2021;77:339–45. https://doi.org/10.1016/j.sleep.2020.05.021.
Smith BM, Twohy AJ, Smith GS. Psychological inflexibility and intolerance of uncertainty moderate the relationship between social isolation and mental health outcomes during COVID-19. J Contextual Behav Sci. 2020;18:162–74. https://doi.org/10.1016/j.jcbs.2020.09.005.
Prikhidko A, Long H, Wheaton MG. The effect of concerns about COVID-19 on anxiety, stress, parental burnout, and emotion regulation: the role of susceptibility to digital emotion contagion. Front Public Health. 2020;8:567250. https://doi.org/10.3389/fpubh.2020.567250.
Knepple Carney A, Graf AS, Hudson G, Wilson E. Age moderates perceived COVID-19 disruption on well-being. The Gerontologist. 2021;61(1):30–5. https://doi.org/10.1093/geront/gnaa106.
Magson NR, Freeman JYA, Rapee RM, Richardson CE, Oar EL, Fardouly J. Risk and protective factors for prospective changes in adolescent mental health during the COVID-19 pandemic. J Youth Adolesc. 2021;50(1):44–57. https://doi.org/10.1007/s10964-020-01332-9.
Yang Y, Liu K, Li S, Shu M. Social media activities, emotion regulation strategies, and their interactions on people's mental health in COVID-19 pandemic. Int J Environ Res Public Health. 2020;17(23). https://doi.org/10.3390/ijerph17238931.
Du C, Zan MCH, Cho MJ, Fenton JI, Hsiao PY, Hsiao R, et al. Increased resilience weakens the relationship between perceived stress and anxiety on sleep quality: a moderated mediation analysis of higher education students from 7 countries. Clocks Sleep. 2020;2(3):334–53. https://doi.org/10.3390/clockssleep2030025.
Harris SM, Sandal GM. COVID-19 and psychological distress in Norway: the role of trust in the healthcare system. Scand J Public Health. 2021;49(1):96–103. https://doi.org/10.1177/1403494820971512.
Herbert JS, Mitchell A, Brentnall SJ, Bird AL. Identifying rewards over difficulties buffers the impact of time in COVID-19 lockdown for parents in Australia. Front Psychol. 2020;11(3441). https://doi.org/10.3389/fpsyg.2020.606507.
Yang X, Song B, Wu A, Mo PKH, Di J, Wang Q, et al. Social, cognitive, and eHealth mechanisms of COVID-19-related lockdown and mandatory quarantine that potentially affect the mental health of pregnant women in China: cross-sectional survey study. J Med Internet Res. 2021;23(1):e24495. https://doi.org/10.2196/24495.
Judge TA, Erez A, Bono JE, Thoresen CJ. Are measures of self-esteem, neuroticism, locus of control, and generalized self-efficacy indicators of a common core construct? J Pers Soc Psychol. 2002;83(3):693–710. https://doi.org/10.1037//0022-3514.83.3.693.
Rotter JB. Generalized expectancies for internal versus external control of reinforcement. Psychol Monogr. 1966;80(1):1–28. https://doi.org/10.1037/h0092976.
Bjørkløf GH, Engedal K, Selbæk G, Maia DB, Borza T, Benth J, et al. Can depression in psychogeriatric inpatients at one year follow-up be explained by locus of control and coping strategies? Aging Ment Health. 2018;22(3):379–88. https://doi.org/10.1080/13607863.2016.1262817.
Jakoby N, Jacob R. Messung von internen und externen Kontrollüberzeugungen in allgemeinen Bevölkerungsumfragen [Measurement of internal and external control convictions in general population surveys]. ZUMA Nachrichten. 1999;23(45):61–71 https://nbn-resolving.org/urn:nbn:de:0168-ssoar-208124.
Kovaleva A, Beierlein C, Kemper C, Rammstedt B. Eine Kurzskala zur Messung von Kontrollüberzeugung: Die Skala Internale-Externale-Kontrollüberzeugung-4 (IE-4) [A short scale for the assessment of Locus of Control: The scale internal-external control - 4 (IE-4)]. GESIS-Working Papers 2012;2012|19.
Suárez-Álvarez J, Pedrosa I, García-Cueto E, Muñiz J. Locus of control revisited: development of a new bi-dimensional measure. Anales Psicol / Annals Psychol. 2016;32(2):578–86. https://doi.org/10.6018/analesps.32.2.200781.
Brown AJ, Thaker PH, Sun CC, Urbauer DL, Bruera E, Bodurka DC, et al. Nothing left to chance? The impact of locus of control on physical and mental quality of life in terminal cancer patients. Support Care Cancer. 2017;25(6):1985–91. https://doi.org/10.1007/s00520-017-3605-z.
Cheng C, Cheung SF, Chio JH, Chan MP. Cultural meaning of perceived control: a meta-analysis of locus of control and psychological symptoms across 18 cultural regions. Psychol Bull. 2013;139(1):152–88. https://doi.org/10.1037/a0028596.
Gore JS, Griffin DP, McNierney D. Does internal or external locus of control have a stronger link to mental and physical health? Psychol Stud. 2016;61(3):181–96. https://doi.org/10.1007/s12646-016-0361-y.
Groth N, Schnyder N, Kaess M, Markovic A, Rietschel L, Moser S, et al. Coping as a mediator between locus of control, competence beliefs, and mental health: a systematic review and structural equation modelling meta-analysis. Behav Res Ther. 2019;121:103442. https://doi.org/10.1016/j.brat.2019.103442.
Hovenkamp-Hermelink JHM, Jeronimus BF, van der Veen DC, Spinhoven P, Penninx B, Schoevers RA, et al. Differential associations of locus of control with anxiety, depression and life-events: a five-wave, nine-year study to test stability and change. J Affect Disord. 2019;253:26–34. https://doi.org/10.1016/j.jad.2019.04.005.
Berg MB, Lin L. Prevalence and predictors of early COVID-19 behavioral intentions in the United States. Transl Behav Med. 2020;10(4):843–9. https://doi.org/10.1093/tbm/ibaa085.
Sigurvinsdottir R, Thorisdottir IE, Gylfason HF. The impact of COVID-19 on mental health: the role of locus on control and internet use. Int J Environ Res Public Health. 2020;17(19):6985. https://doi.org/10.3390/ijerph17196985.
Alat P, Das SS, Arora A, Jha AK. Mental health during COVID-19 lockdown in India: role of psychological capital and internal locus of control. Curr Psychol. 2021. https://doi.org/10.1007/s12144-021-01516-x.
Oksanen A, Kaakinen M, Latikka R, Savolainen I, Savela N, Koivula A. Regulation and trust: 3-month follow-up study on COVID-19 mortality in 25 European countries. JMIR Public Health Surveill. 2020;6(2):e19218–e. https://doi.org/10.2196/19218.
Mækelæ MJ, Reggev N, Dutra N, Tamayo RM, Silva-Sobrinho RA, Klevjer K, et al. Perceived efficacy of COVID-19 restrictions, reactions and their impact on mental health during the early phase of the outbreak in six countries. S Soc Open Sci. 2020;7(8):200644. https://doi.org/10.1098/rsos.200644.
Christensen T, Lægreid P. The coronavirus crisis—crisis communication, meaning-making, and reputation management. Int Public Manag J. 2020;23(5):713–29. https://doi.org/10.1080/10967494.2020.1812455.
Johns Hopkins University. COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University; https://github.com/CSSEGISandData/COVID-19. 2021.
Schnell T. The psychology of meaning in life. New York, Abingdon: Routledge; 2021.
Kroenke K, Spitzer RL, Williams JB, Monahan PO, Loewe B. An ultra-brief screening scale for anxiety and depression: the PHQ–4. Psychosomatics. 2009;50(6):613–21. https://doi.org/10.1176/appi.psy.50.6.613.
Kroenke K, Spitzer RL, Williams JB, Loewe B. The patient health questionnaire somatic, anxiety, and depressive symptom scales: a systematic review. Gen Hosp Psychiatry. 2010;32(4):345–59. https://doi.org/10.1016/j.genhosppsych.2010.03.006.
Loewe B, Wahl I, Rose M, Spitzer C, Glaesmer H, Wingenfeld K, et al. A 4-item measure for depression and anxiety: validation and standardization of the patient health Questionnaire-4 (PHQ-4) in the general population. J Affect Disord. 2010;122(1-2):86–95. https://doi.org/10.1016/j.jad.2009.06.019.
Kerper L, Spies C, Tillinger J, Wegscheider K, Salz A-L, Weiß-Gerlach E, et al. Screening for depression, anxiety and general psychological distress in preoperative surgical patients: a psychometric analysis of the patient health questionnaire 4 (PHQ-4). Clinical Health Promotion. 2014;4(1):5–14.
Kroenke K, Baye F, Lourens SG. Comparative validity and responsiveness of PHQ-ADS and other composite anxiety-depression measures. J Affect Disord. 2019;246:437–43. https://doi.org/10.1016/j.jad.2018.12.098.
Glaesmer H, Braehler E, Grande G, Hinz A, Petermann F, Romppel M. The German version of the Hopkins symptoms Checklist-25 (HSCL-25) --factorial structure, psychometric properties, and population-based norms. Compr Psychiatry. 2014;55(2):396–403. https://doi.org/10.1016/j.comppsych.2013.08.020.
Andreassen T, Hansen BT, Engesaeter B, Hashim D, Støer NC, Tropé A, et al. Psychological effect of cervical cancer screening when changing primary screening method from cytology to high-risk human papilloma virus testing. Int J Cancer. 2019;145(1):29–39. https://doi.org/10.1002/ijc.32067.
Solem S, Pedersen H, Nesse F, Garvik Janssen A, Ottesen Kennair LE, Hagen R, et al. Validity of a Norwegian version of the desire thinking questionnaire (DTQ): associations with problem drinking, nicotine dependence and problematic social media use. Clin Psychol Psychother. 2020;28(3):615–22. https://doi.org/10.1002/cpp.2524.
Hayes AF, Coutts JJ. Use Omega rather than Cronbach’s Alpha for estimating reliability. But… Commun Methods Meas. 2020;14(1):1–24. https://doi.org/10.1080/19312458.2020.1718629.
Hayes AF. Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. New York: Guilford Press; 2013.
Hayes AF, Rockwood NJ. Regression-based statistical mediation and moderation analysis in clinical research: Observations, recommendations, and implementation. Behav Res Ther. 2016;epub ahead of print. https://doi.org/10.1016/j.brat.2016.11.001.
IBM Corp. Released 2017. IBM SPSS statistics for windows, version 25.0. Armonk: IBM Corp; 2017.
Zimmerman MA, Rappaport J. Citizen participation, perceived control, and psychological empowerment. Am J Community Psychol. 1988;16(5):725–50. https://doi.org/10.1007/bf00930023.
Taylor M. Does locus of control predict young adult conflict strategies with superiors? An examination of control orientation and the organizational communication conflict instrument. N Am J Psychol. 2010;12(3):445–58.
Koelen MA, Lindström B. Making healthy choices easy choices: the role of empowerment. Eur J Clin Nutr. 2005;59 Suppl 1(S1):S10–S6. https://doi.org/10.1038/sj.ejcn.1602168.
Náfrádi L, Nakamoto K, Schulz PJ. Is patient empowerment the key to promote adherence? A systematic review of the relationship between self-efficacy, health locus of control and medication adherence. PLoS One. 2017;12(10):e0186458. https://doi.org/10.1371/journal.pone.0186458.
Follette VM, Jacobson NS. Importance of attributions as a predictor of how people cope with failure. J Pers Soc Psychol. 1987;52(6):1205–11. https://doi.org/10.1037//0022-3514.52.6.1205.
Ebrahimi OV, Hoffart A, Johnson SU. Physical distancing and mental health during the COVID-19 pandemic: factors associated with psychological symptoms and adherence to pandemic mitigation strategies. Clin Psychol Sci. 2021;2167702621994545(3):489–506. https://doi.org/10.1177/2167702621994545.
Dahl AA, Grotmol KS, Hjermstad MJ, Kiserud CE, Loge JH. Norwegian reference data on the fatigue questionnaire and the patient health Questionnaire-9 and their interrelationship. Ann General Psychiatry. 2020;19(1):60. https://doi.org/10.1186/s12991-020-00311-5.
Schlax J, Wiltink J, Beutel ME, Münzel T, Pfeiffer N, Wild P, et al. Symptoms of depersonalization/derealization are independent risk factors for the development or persistence of psychological distress in the general population: results from the Gutenberg health study. J Affect Disord. 2020;273:41–7. https://doi.org/10.1016/j.jad.2020.04.018.
Torske MO, Hilt B, Glasscock D, Lundqvist P, Krokstad S. Anxiety and depression symptoms among farmers: the HUNT study. Norway J Agromedicine. 2016;21(1):24–33. https://doi.org/10.1080/1059924x.2015.1106375.
Rehm J, Shield KD. Global burden of disease and the impact of mental and addictive disorders. Curr Psychiatry Rep. 2019;21(2):10. https://doi.org/10.1007/s11920-019-0997-0.
Paudel D. ABC Framework of Fear of COVID-19 for Psychotherapeutic Intervention in Nepal: A Review. PsyArXiv September 4 doi: https://doi.org/10.31234/osfio/9sj4a. 2020.
Schnell T, Spitzenstätter D, Krampe H. Compliance with Covid-19 public health guidelines: An attitude-behaviour gap bridged by personal concern and mandatory regulations. under review. 2021.
Saunders R, Buckman JEJ, Fonagy P, Fancourt D. Understanding different trajectories of mental health across the general population during the COVID-19 pandemic. Psychol Med. 2021:1–9. https://doi.org/10.1017/s0033291721000957.
Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020;395(10227):912–20. https://doi.org/10.1016/S0140-6736(20)30460-8.
Luo Y, Chua CR, Xiong Z, Ho RC, Ho CSH. A systematic review of the impact of viral respiratory epidemics on mental health: An implication on the coronavirus disease 2019 pandemic. Front Psychiatry. 2020;11:565098. https://doi.org/10.3389/fpsyt.2020.565098.
Rogers JP, Chesney E, Oliver D, Pollak TA, McGuire P, Fusar-Poli P, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020;7(7):611–27. https://doi.org/10.1016/s2215-0366(20)30203-0.