A high-flux mixed matrix nanofiltration membrane with highly water-dispersible MOF crystallites as filler
Tài liệu tham khảo
Zhao, 2019, Highly flexible magnesium silicate nanofibrous membranes for effective removal of methylene blue from aqueous solution, Chem. Eng. J., 359, 1603, 10.1016/j.cej.2018.11.011
Luo, 2017, Adsorption of methylene blue and malachite green from aqueous solution by sulfonic acid group modified MIL-101, Microporous Mesoporous Mater., 237, 268, 10.1016/j.micromeso.2016.09.032
Yang, 2017, Highly permeable zeolite imidazolate framework composite membranes fabricated via a chelation-assisted interfacial reaction, J. Mater. Chem. A, 5, 15342, 10.1039/C7TA03244G
Yao, 2016, Post-synthetic polymerization of UiO-66-NH2 nanoparticles and polyurethane oligomer toward stand-alone membranes for dye removal and separation, Chem. Eur J., 22, 10565, 10.1002/chem.201600817
Bhadra, 2016, Remarkable adsorbent for phenol removal from fuel: functionalized metal–organic framework, Fuel, 174, 43, 10.1016/j.fuel.2016.01.071
Yang, 2017, Zeolite imidazolate framework hybrid nanofiltration (NF) membranes with enhanced permselectivity for dye removal, J. Membr. Sci., 532, 76, 10.1016/j.memsci.2017.03.014
Huang, 2011, The high flux poly (m-phenylene isophthalamide) nanofiltration membrane for dye purification and desalination, Desalination, 282, 19, 10.1016/j.desal.2011.09.045
Wang, 2014, One-step self-assembly fabrication of amphiphilic hyperbranched polymer composite membrane from aqueous emulsion for dye desalination, J. Membr. Sci., 452, 143, 10.1016/j.memsci.2013.10.034
Wang, 2016, Ceramic tubular MOF hybrid membrane fabricated through in situ layer-by-layer self-assembly for nanofiltration, AIChE J., 62, 538, 10.1002/aic.15115
Ding, 2015, Graphene oxide-embedded nanocomposite membrane for solvent resistant nanofiltration with enhanced rejection ability, Chem. Eng. Sci., 138, 227, 10.1016/j.ces.2015.08.019
Campbell, 2014, Fabrication of hybrid polymer/metal organic framework membranes: mixed matrix membranes versus in situ growth, J. Mater. Chem. A, 2, 9260, 10.1039/C4TA00628C
Campbell, 2016, Hybrid polymer/MOF membranes for organic solvent nanofiltration (OSN): Chemical modification and the quest for perfection, J. Membr. Sci., 503, 166, 10.1016/j.memsci.2016.01.024
Ma, 2018, Mixed matrix membrane based on cross-linked poly[(ethylene glycol) methacrylate] and metal–organic framework for efficient separation of carbon dioxide and methane, ACS Appl. Nano Mater., 1, 2808, 10.1021/acsanm.8b00459
Zhao, 2019, Impacts of metal-organic frameworks on structure and performance of polyamide thin-film nanocomposite membranes, ACS Appl. Mater. Interfaces, 11, 13724, 10.1021/acsami.9b01923
Fan, 2014, Simultaneous spray self-assembly of highly loaded ZIF-8-PDMS nanohybrid membranes exhibiting exceptionally high biobutanol-permselective pervaporation, Angew. Chem. Int. Ed., 53, 5578, 10.1002/anie.201309534
Wee, 2008, Membrane separation process—pervaporation through zeolite membrane, Separ. Purif. Technol., 63, 500, 10.1016/j.seppur.2008.07.010
Zornoza, 2013, Metal organic framework based mixed matrix membranes: an increasingly important field of research with a large application potential, Microporous Mesoporous Mater., 166, 67, 10.1016/j.micromeso.2012.03.012
Fan, 2014, Nanodisperse ZIF-8/PDMS hybrid membranes for biobutanol permselective pervaporation, J. Mater. Chem. A, 2, 20947, 10.1039/C4TA04114C
Bowen, 2004, Fundamentals and applications of pervaporation through zeolite membranes, J. Membr. Sci., 245, 1, 10.1016/j.memsci.2004.06.059
Zhang, 2014, Mineralization-inspired preparation of composite membranes with polyethyleneimine–nanoparticle hybrid active layer for solvent resistant nanofiltration, J. Membr. Sci., 470, 70, 10.1016/j.memsci.2014.07.019
Zhang, 2014, Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes, Angew. Chem. Int. Ed., 53, 9775, 10.1002/anie.201403978
Liu, 2014, Fabrication of MOFs/PEBA mixed matrix membranes and their application in bio-butanol production, Separ. Purif. Technol., 133, 40, 10.1016/j.seppur.2014.06.034
Dou, 2018, Highly efficient catalytic esterification in an −SO3H-functionalized Cr(III)-MOF, Ind. Eng. Chem. Res., 57, 8388, 10.1021/acs.iecr.8b01239
Zhang, 2015, Enhanced flux of polydimethylsiloxane membrane for ethanol permselective pervaporation via incorporation of MIL-53 particles, J. Membr. Sci., 492, 322, 10.1016/j.memsci.2015.05.070
Li, 2017, Metal-organic frameworks based membranes for liquid separation, Chem. Soc. Rev., 46, 7124, 10.1039/C7CS00575J
Wee, 2015, Submicrometer-sized ZIF-71 filled organophilic membranes for improved bioethanol recovery: Mechanistic insights by Monte Carlo simulation and FTIR spectroscopy, Adv. Funct. Mater., 25, 516, 10.1002/adfm.201402972
Park, 2015, The polymeric upper bound for N2/NF3 separation and beyond; ZIF-8 containing mixed matrix membranes, J. Membr. Sci., 486, 29, 10.1016/j.memsci.2015.03.030
Ruan, 2016, Fabrication of a MIL-53(Al) nanocomposite membrane and potential application in desalination of dye solutions, Ind. Eng. Chem. Res., 55, 12099, 10.1021/acs.iecr.6b03201
Guo, 2017, Preparation of thin film nanocomposite membranes with surface modified MOF for high flux organic solvent nanofiltration, AIChE J., 63, 1303, 10.1002/aic.15508
Ying, 2017, High-flux graphene oxide membranes intercalated by metal-organic framework with highly selective separation of aqueous organic solution, ACS Appl. Mater. Interfaces, 9, 1710, 10.1021/acsami.6b14371
Molavi, 2018, Improving mixed-matrix membrane performance via PMMA grafting from functionalized NH2–UiO-66, J. Mater. Chem. A, 6, 2775, 10.1039/C7TA10480D
Yang, 2017, A flexible metal–organic framework with a high density of sulfonic acid sites for proton conduction, Nat. Energy, 2, 877, 10.1038/s41560-017-0018-7
Fan, 2017, Improving permeation and antifouling performance of polyamide nanofiltration membranes through the incorporation of arginine, ACS Appl. Mater. Interfaces, 9, 13577, 10.1021/acsami.7b00159
Freger, 2003, Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization, Langmuir, 19, 4791, 10.1021/la020920q
Guo, 2015, LbL assembly of sulfonated cyclohexanone–formaldehyde condensation polymer and poly(ethyleneimine) towards rejection of both cationic ions and dyes, Desalination, 365, 108, 10.1016/j.desal.2015.01.021
Wang, 2010, The salt-, pH- and oxidant-responsive pervaporation behaviors of weak polyelectrolyte multilayer membranes, J. Membr. Sci., 354, 14, 10.1016/j.memsci.2010.03.002
Srinivasa Rao, 2006, Preparation and performance of poly(vinyl alcohol)/polyethyleneimine blend membranes for the dehydration of 1,4-dioxane by pervaporation: comparison with glutaraldehyde cross-linked membranes, Separ. Purif. Technol., 48, 244, 10.1016/j.seppur.2005.07.031
Ruan, 2017, Polyethyleneimine-grafted membranes for simultaneously adsorbing heavy metal ions and rejecting suspended particles in wastewater, AIChE J., 63, 4541, 10.1002/aic.15789
Shu, 2018, Facile fabrication of high performance nanofiltration membranes by using molecular coordination complexes as pore-forming agents, ACS Sustain. Chem. Eng., 7, 2728, 10.1021/acssuschemeng.8b05817
Zhao, 2017, A loose nano-filtration membrane prepared by coating HPAN UF membrane with modified PEI for dye reuse and desalination, J. Membr. Sci., 524, 214, 10.1016/j.memsci.2016.11.035
Shen, 2016, Low pressure UV-cured CS–PEO–PTEGDMA/PAN thin film nanofibrous composite nanofiltration membranes for anionic dye separation, J. Mater. Chem. A, 4, 15575, 10.1039/C6TA04360G
Wang, 2018, Interfacial polymerization of covalent organic frameworks (COFs) on polymeric substrates for molecular separations, J. Membr. Sci., 566, 197, 10.1016/j.memsci.2018.08.044
Gorgojo, 2014, Ultrathin polymer films with intrinsic microporosity: anomalous solvent permeation and high flux membranes, Adv. Funct. Mater., 24, 4729, 10.1002/adfm.201400400
Ding, 2017, A two-dimensional lamellar membrane: mxene nanosheet stacks, Angew. Chem. Int. Ed., 56, 1825, 10.1002/anie.201609306
Li, 2018, Interfacial growth of metal-organic framework membranes on porous polymers via phase transformation, Chem. Commun., 54, 3590, 10.1039/C7CC09905C
Fan, 2018, High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration, Angew. Chem. Int. Ed., 57, 4083, 10.1002/anie.201712816
Wang, 2016, Zeolitic imidazolate framework/graphene oxide hybrid nanosheets functionalized thin film nanocomposite membrane for enhanced antimicrobial performance, ACS Appl. Mater. Interfaces, 8, 25508, 10.1021/acsami.6b06992
Wang, 2015, Sulfonated halloysite nanotubes/polyethersulfone nanocomposite membrane for efficient dye purification, Separ. Purif. Technol., 150, 243, 10.1016/j.seppur.2015.07.005
Zhao, 2018, A loose hybrid nanofiltration membrane fabricated via chelating-assisted in-situ growth of Co/Ni LDHs for dye wastewater treatment, Chem. Eng. J., 353, 460, 10.1016/j.cej.2018.07.081
Wang, 2016, Nanoconfined zeolitic imidazolate framework membranes with composite layers of nearly zero thickness, ACS Appl. Mater. Interfaces, 8, 21979, 10.1021/acsami.6b08581
Dlamini, 2019, The role of nanoparticles in the performance of nano-enabled composite membranes - a critical scientific perspective, Sci. Total Environ., 656, 723, 10.1016/j.scitotenv.2018.11.421
Albo, 2014, Structural characterization of thin-film polyamide reverse osmosis membranes, Ind. Eng. Chem. Res., 53, 1442, 10.1021/ie403411w
Albo, 2014, Application of interfacially polymerized polyamide composite membranes to isopropanol dehydration: effect of membrane pre-treatment and temperature, J. Membr. Sci., 453, 384, 10.1016/j.memsci.2013.11.030