Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis
Tài liệu tham khảo
Bo, 2014, A new upgraded biogas production process: coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor, Electrochem. Commun., 45, 67, 10.1016/j.elecom.2014.05.026
Call, 2008, Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane, Environ. Sci. Technol., 42, 3401, 10.1021/es8001822
Chen, 2007, Hydrolysis and acidification of waste activated sludge at different pHs, Water Res., 41, 683, 10.1016/j.watres.2006.07.030
Cheng, 2007, Sustainable and efficient biohydrogen production via electrohydrogenesis, Proc. Natl. Acad. Sci. USA, 104, 18871, 10.1073/pnas.0706379104
Costa, 2014, Metabolic versatility in methanogens, Curr. Opin. Biotechnol., 29, 70, 10.1016/j.copbio.2014.02.012
De Vrieze, 2014, Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion, Water Res., 54, 211, 10.1016/j.watres.2014.01.044
Eastman, 1981, Solubilization of particulate organic carbon during the acid phase of anaerobic digestion, J. (Water Pollut. Control Fed.), 352
Fernandez, 2000, Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose, Appl. Environ. Microbiol., 66, 4058, 10.1128/AEM.66.9.4058-4067.2000
Hirano, 2013, Electrochemical control of redox potential affects methanogenesis of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus, Lett. Appl. Microbiol., 56, 315, 10.1111/lam.12059
Kiely, 2011, Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts, Bioresour. Technol., 102, 361, 10.1016/j.biortech.2010.05.017
Liang, 2014, Microbial community structure and function of nitrobenzene reduction biocathode in response to carbon source switchover, Water Res., 54, 137, 10.1016/j.watres.2014.01.052
Linji, 2013, Optimizing external voltage for enhanced energy recovery from sludge fermentation liquid in microbial electrolysis cell, Int. J. Hydrogen Energy, 38, 15801, 10.1016/j.ijhydene.2013.05.084
Liu, 2010, Geochip-based functional gene analysis of anodophilic communities in microbial electrolysis cells under different operational modes, Environ. Sci. Technol., 44, 7729, 10.1021/es100608a
Lohner, 2014, Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis, ISME J., 8, 1673, 10.1038/ismej.2014.82
Rabaey, 2005, Microbial fuel cells: novel biotechnology for energy generation, Trends Biotechnol., 23, 291, 10.1016/j.tibtech.2005.04.008
Rotaru, 2014, A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane, Energy Environ. Sci., 7, 408, 10.1039/C3EE42189A
Rozendal, 2006, Principle and perspectives of hydrogen production through biocatalyzed electrolysis, Int. J. Hydrogen Energy, 31, 1632, 10.1016/j.ijhydene.2005.12.006
Rozendal, 2008, Towards practical implementation of bioelectrochemical wastewater treatment, Trends Biotechnol., 26, 450, 10.1016/j.tibtech.2008.04.008
Sasaki, 2011, Bioelectrochemical system accelerates microbial growth and degradation of filter paper, Appl. Microbiol. Biotechnol., 89, 449, 10.1007/s00253-010-2972-x
Siegert, 2015, Methanobacterium dominates biocathodic archaeal communities in methanogenic microbial electrolysis cells, ACS Sustainable Chem. Eng., 3, 1668, 10.1021/acssuschemeng.5b00367
Stams, 2009, Electron transfer in syntrophic communities of anaerobic bacteria and archaea, Nat. Rev. Microbiol., 7, 568, 10.1038/nrmicro2166
Thrash, 2008, Review: direct and indirect electrical stimulation of microbial metabolism, Environ. Sci. Technol., 42, 3921, 10.1021/es702668w
Villano, 2010, Bioelectrochemical reduction of CO(2) to CH(4) via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture, Bioresour. Technol., 101, 3085, 10.1016/j.biortech.2009.12.077
Villano, 2011, Electrochemically assisted methane production in a biofilm reactor, J. Power Sources, 196, 9467, 10.1016/j.jpowsour.2011.07.016
Wagner, 2009, Hydrogen and methane production from swine wastewater using microbial electrolysis cells, Water Res., 43, 1480, 10.1016/j.watres.2008.12.037
Wang, 2009, Source of methane and methods to control its formation in single chamber microbial electrolysis cells, Int. J. Hydrogen Energy, 34, 3653, 10.1016/j.ijhydene.2009.03.005
Wang, 2010, Key factors affecting microbial anode potential in a microbial electrolysis cell for H2 production, Int. J. Hydrogen Energy, 35, 13481, 10.1016/j.ijhydene.2009.11.125
Wang, 2012, A membrane-free, continuously feeding, single chamber up-flow biocatalyzed electrolysis reactor for nitrobenzene reduction, J. Hazard. Mater., 199–200, 401, 10.1016/j.jhazmat.2011.11.034
Xu, 2014, Bioelectrochemical removal of carbon dioxide (CO2): an innovative method for biogas upgrading, Bioresour. Technol., 173, 392, 10.1016/j.biortech.2014.09.127
Zhang, 2015, Enhancement of anaerobic acidogenesis by integrating an electrochemical system into an acidogenic reactor: effect of hydraulic retention times (HRT) and role of bacteria and acidophilic methanogenic archaea, Bioresour. Technol., 179, 43, 10.1016/j.biortech.2014.11.102
Zhao, 2014, Bioelectrochemical enhancement of anaerobic methanogenesis for high organic load rate wastewater treatment in a up-flow anaerobic sludge blanket (UASB) reactor, Sci. Rep., 4, 6658, 10.1038/srep06658
Zhao, 2015, Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion, Sci. Rep., 5, 11094, 10.1038/srep11094
Zhao, 2015, Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials, Bioresour. Technol., 191, 140, 10.1016/j.biortech.2015.05.007
Zhou, 2013, Volatile fatty acids productivity by anaerobic co-digesting waste activated sludge and corn straw: effect of feedstock proportion, J. Biotechnol., 10.1016/j.jbiotec.2013.05.015
Zhou, 2013, Volatile fatty acids accumulation and rhamnolipid generation in situ from waste activated sludge fermentation stimulated by external rhamnolipid addition, Biochem. Eng. J., 77, 240, 10.1016/j.bej.2013.06.007
