Long-term tests of a Jülich planar short stack with reversible solid oxide cells in both fuel cell and electrolysis modes

International Journal of Hydrogen Energy - Tập 38 - Trang 4281-4290 - 2013
Van Nhu Nguyen1, Qingping Fang1, Ute Packbier1, Ludger Blum1
1Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Wilhelm-Johnen-Straße, D-52428 Jülich, Germany

Tài liệu tham khảo

Smolinka, 2010, Polymer electrolyte membrane (PEM) water electrolysis, 271 Ursua, 2012, Hydrogen production from water electrolysis: current status and future trends, Proc IEEE, 100, 410, 10.1109/JPROC.2011.2156750 Smolinka, 2009, Water electrolysis, 394 Doenitz, 1982, Concepts and design for scaling up high temperature water vapour electrolysis, Int J Hydrogen Energy, 7, 55, 10.1016/0360-3199(82)90125-2 Hauch, 2006, Performance and durability of solid oxide electrolysis cells, J Electrochem Soc, 153, A1741, 10.1149/1.2216562 Stoots, 2009, The high-temperature electrolysis integrated laboratory experiment, Nucl Technol, 166, 32, 10.13182/NT09-A6966 Zahid, 2010, 227 Laguna-Bercero, 2012, Recent advances in high temperature electrolysis using solid oxide fuel cells: a review, J Power Sources, 203, 4, 10.1016/j.jpowsour.2011.12.019 Borglum, 2011, Development of solid oxide fuel cells at Versa Power Systems, ECS Trans, 35, 63, 10.1149/1.3569979 Elangovan, 2011, Materials for solid oxide electrolysis cells, ECS Trans, 35, 2875, 10.1149/1.3570287 Minh, 2011, Development of reversible solid oxide fuel cells (RSOFCs) and stacks, ECS Trans, 35, 2897, 10.1149/1.3570289 Hayashi, 2011, Progress on SOFC power generation module and system developed by NTT, SPP and THG, ECS Trans, 35, 121, 10.1149/1.3569986 Green, 2008, Carbon dioxide reduction on gadolinia-doped ceria cathodes, Solid State Ion, 179, 647, 10.1016/j.ssi.2008.04.024 Bidrawn, 2008, Efficient reduction of CO2 in a solid oxide electrolyzer, Electrochem Solid State Lett, 11, B167, 10.1149/1.2943664 Ebbesen, 2009, Electrolysis of carbon dioxide in solid oxide electrolysis cells, J Power Sources, 193, 349, 10.1016/j.jpowsour.2009.02.093 Stoots, 2009, Syngas production via high-temperature coelectrolysis of steam and carbon dioxide, J Fuel Cell Sci Technol, 6, 1, 10.1115/1.2971061 Zhan, 2009, Syngas production by coelectrolysis of CO2/H2O: the basis for a renewable energy cycle, Energy Fuels, 23, 3089, 10.1021/ef900111f Ebbesen, 2009, Production of synthetic fuels by co-electrolysis of steam and carbon dioxide, Int J Green Energy, 6, 646, 10.1080/15435070903372577 Graves, 2011, Co-electrolysis of CO2 and H2O in solid oxide cells: performance and durability, Solid State Ion, 192, 398, 10.1016/j.ssi.2010.06.014 Fu, 2011, High-temperature CO2 and H2O electrolysis with an electrolyte-supported solid oxide cell, ECS Trans, 35, 2949, 10.1149/1.3570294 Ni, 2012, An electrochemical model for syngas production by co-electrolysis of H2O and CO2, J Power Sources, 202, 209, 10.1016/j.jpowsour.2011.11.080 Dry, 2002, The Fischer–Tropsch process: 1950–2000, Catal Today, 71, 227, 10.1016/S0920-5861(01)00453-9 Pearson, 2012, Energy storage via carbon-neutral fuels made from CO2, water, and renewable energy, Proc IEEE, 100, 440, 10.1109/JPROC.2011.2168369 Zhan, 2005, An octane-fueled solid oxide fuel cell, Science, 308, 844, 10.1126/science.1109213 Blum, 2011, Comparison of efficiencies of low, mean and high temperature fuel cell systems, Int J Hydrogen Energy, 36, 11056, 10.1016/j.ijhydene.2011.05.122 Sterner M. Bioenergy and renewable power methane in integrated 100% renewable energy systems. Dr.-Ing dissertation, Univ. Kassel, Kassel, Germany; Sep. 2009. ISBN: 978-3-89958-798-2. Hauch, 2008, Solid oxide electrolysis cells: microstructure and degradation of the Ni/yttria-stabilized zirconia electrode, J Electrochem Soc, 155, B1184, 10.1149/1.2967331 Nabielek, 2009, Reducing degradation effects in SOFC stacks manufactured at Forschungszentrum Jülich – approaches results, Ceram Eng Sci Proc, 28, 65 O'Brien, 2007, Performance of planar high-temperature electrolysis stacks for hydrogen production from nuclear energy, Nucl Technol, 158, 118, 10.13182/NT07-A3830 Knibbe, 2010, Solid oxide electrolysis cells: degradation at high current densities, J Electrochem Soc, 157, B1209, 10.1149/1.3447752 Sohal, 2012, Degradation issues in solid oxide cells during high temperature electrolysis, J Fuel Cell Sci Technol, 9, 011017-1, 10.1115/1.4003787 Sharma, 2010, Degradation mechanism in La0.8Sr0.2CoO3 as contact layer on the solid oxide electrolysis cell anode, J Electrochem Soc, 157, B441, 10.1149/1.3288835 Laguna-Bercero, 2010, Performance and characterization of (La, Sr) MnO3/YSZ and La0.6Sr0.4Co0.2Fe0.8O3 electrodes for solid oxide electrolysis cells, Chem Mater, 22, 1134, 10.1021/cm902425k Marina, 2007, Electrode performance in reversible solid oxide fuel cells, J Electrochem Soc, 154, B452, 10.1149/1.2710209 Laguna-Bercero, 2011, Development of oxygen electrodes for reversible solid oxide fuel cells with scandia stabilized zirconia electrolytes, Solid State Ion, 192, 501, 10.1016/j.ssi.2010.01.003 Tietz, 2006, Performance of LSCF cathodes in cell tests, J Power Sources, 156, 20, 10.1016/j.jpowsour.2005.08.015 Schefold, 2012, Nine thousand hours of operation of a solid oxide cell in steam electrolysis mode, J Electrochem Soc, 159, A137, 10.1149/2.076202jes Steinberger-Wilckens, 2002, Solid oxide fuel cells, Proc Electrochem Soc, 98 Stoots, 2009, Results of recent high temperature coelectrolysis studies at the Idaho National Laboratory, Int J Hydrogen Energy, 34, 4208, 10.1016/j.ijhydene.2008.08.029