A new test system for unraveling the effects of soil components on the uptake and toxicity of silver nanoparticles (NM-300K) in simulated pore water

Science of The Total Environment - Tập 673 - Trang 613-621 - 2019
Moira S. McKee1, Jan Köser2, Oliver Focke3, Juliane Filser1
1University of Bremen, FB02, UFT, General and Theoretical Ecology, Leobener Str. 6, 28359 Bremen, Germany
2University of Bremen, FB04, UFT, Sustainable Chemistry, Leobener Str. 6, 28359 Bremen, Germany
3Hybrid Materials Interfaces Group, Faculty of Production Engineering, MAPEX Center for Materials and Processes, University of Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany

Tài liệu tham khảo

Bernot, 2005, Effects of ionic liquids on the survival, movement, and feeding behavior of the freshwater snail, <I>Physa acuta</I>, Environ. Toxicol. Chem., 24, 1759, 10.1897/04-614R.1 Bicho, 2016, Effects of Ag nanomaterials (NM300K) and Ag salt (AgNO3) can be discriminated in a full life cycle long term test with Enchytraeus crypticus, J. Hazard. Mater., 318, 608, 10.1016/j.jhazmat.2016.07.040 Bielská, 2012, Variability of standard artificial soils: physico-chemical properties and phenanthrene desorption measured by means of supercritical fluid extraction, Environ. Pollut., 163, 1, 10.1016/j.envpol.2011.12.009 Bundschuh, 2018, Nanoparticles in the environment: where do we come from, where do we go to?, Environ. Sci. Eur., 30, 10.1186/s12302-018-0132-6 Cai, 2016, A surface tension based method for measuring oil dispersant concentration in seawater, Mar. Pollut. Bull., 109, 49, 10.1016/j.marpolbul.2016.06.028 Colman, 2013, Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario, PLoS One, 8, 10.1371/journal.pone.0057189 Cornelis, 2012, Retention and dissolution of engineered silver nanoparticles in natural soils, Soil Sci. Soc. Am. J., 76, 891, 10.2136/sssaj2011.0360 Cornelis, 2014, Fate and bioavailability of engineered nanoparticles in soils: a review, Crit. Rev. Environ. Sci. Technol., 44, 2720, 10.1080/10643389.2013.829767 Coutris, 2012, Aging and soil organic matter content affect the fate of silver nanoparticles in soil, Sci. Total Environ., 420, 327, 10.1016/j.scitotenv.2012.01.027 Curieses Silvana, 2017, Responses to silver nanoparticles and silver nitrate in a battery of biomarkers measured in coelomocytes and in target tissues of Eisenia fetida earthworms, Ecotoxicol. Environ. Saf., 141, 57, 10.1016/j.ecoenv.2017.03.008 Filser, 2014, Collembola in ecotoxicology-any news or just boring routine?, Appl. Soil Ecol., 83, 193, 10.1016/j.apsoil.2013.07.007 Garcia-Velasco, 2017, Integrative assessment of the effects produced by Ag nanoparticles at different levels of biological complexity in Eisenia fetida maintained in two standard soils (OECD and LUFA 2.3), Chemosphere, 181, 747, 10.1016/j.chemosphere.2017.04.143 Gottschalk, 2015, Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment, Int. J. Environ. Res. Public Health, 12, 5581, 10.3390/ijerph120505581 Harrison, 2014, Using observation-level random effects to model overdispersion in count data in ecology and evolution, PeerJ, 2, e616, 10.7717/peerj.616 Hashimoto, 2017, Chemical speciation of silver (Ag) in soils under aerobic and anaerobic conditions: Ag nanoparticles vs. ionic Ag, J. Hazard. Mater., 322, 318, 10.1016/j.jhazmat.2015.09.001 Heckmann, 2011, Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida, Ecotoxicology, 20, 226, 10.1007/s10646-010-0574-0 Hedberg, 2015, Sorption and dissolution of bare and coated silver nanoparticles in soil suspensions-influence of soil and particle characteristics, J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 50, 891 Hoppe, 2015, Remobilization of sterically stabilized silver nanoparticles from farmland soils determined by column leaching, Eur. J. Soil Sci., 898, 10.1111/ejss.12270 Hoppe, 2016, Retention of sterically and electrosterically stabilized silver nanoparticles by soil minerals, Eur. J. Soil Sci., 67, 573, 10.1111/ejss.12367 Houx, 1996, Acute toxicity test for terrestrial hazard assessment with exposure of Folsomia candida to pesticides in an aqueous medium, Arch. Environ. Contam. Toxicol., 30, 9, 10.1007/BF00211323 Kim, 2001, Wetting and absorbency of nonionic surfactant solutions on cotton fabrics, Colloids Surf. A Physicochem. Eng. Asp., 187–188, 385, 10.1016/S0927-7757(01)00653-7 Klaine, 2008, Nanomaterials in the environment: behavior, fate, bioavailability, and effects, Environ. Toxicol. Chem., 27, 1825, 10.1897/08-090.1 Klein, 2011 Klitzke, 2015, The fate of silver nanoparticles in soil solution - sorption of solutes and aggregation, Sci. Total Environ., 535, 54, 10.1016/j.scitotenv.2014.10.108 Köser Köser, 2017, Predictability of silver nanoparticle speciation and toxicity in ecotoxicological media, Environ. Sci. Nano, 4, 1470, 10.1039/C7EN00026J Levard, 2012, Environmental transformations of silver nanoparticles: impact on stability and toxicity, Environ. Sci. Technol., 46, 6900, 10.1021/es2037405 Li, 1971, Permeation through liquid surfactant membranes, Am. Inst. Chem. Eng. J., 17, 459, 10.1002/aic.690170239 Liu, 2010, Ion release kinetics and particle persistence in aqueous nano silver colloids, Environ. Sci. Technol., 44, 2169, 10.1021/es9035557 Liu, 2012, 9887 McKee, 2016, Impacts of metal-based engineered nanomaterials on soil communities, Environ. Sci. Nano, 3, 506, 10.1039/C6EN00007J McKee, 2017, Collembola reproduction decreases with aging of silver nanoparticles in a sewage sludge-treated soil, Front. Environ. Sci., 5, 1, 10.3389/fenvs.2017.00019 Mendes, 2014, Oxidative stress biomarkers and metallothionein in Folsomia candida - responses to cu and cd, Environ. Res., 133, 164, 10.1016/j.envres.2014.05.027 Meyer, 2010, Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans, Aquat. Toxicol., 100, 140, 10.1016/j.aquatox.2010.07.016 Organisation for Economic Co-operation and Development, 2016 Ranke, 2004, Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays, Ecotoxicol. Environ. Saf., 58, 396, 10.1016/S0147-6513(03)00105-2 Reynolds, 1970, Binding of dodecyl sulfate to proteins at high binding ratios. Possible implications for the state of proteins in biological membranes, Proc. Natl. Acad. Sci., 66, 1002, 10.1073/pnas.66.3.1002 Roh, 2009, Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics, Environ. Sci. Technol., 43, 3933, 10.1021/es803477u Sakka, 2016, How test vessel properties affect the fate of silver nitrate and sterically stabilized silver nanoparticles in two different test designs used for acute tests with Daphnia magna, Environ. Sci. Pollut. Res., 1 Schlich, 2015, Influence of soil properties on the effect of silver nanomaterials on microbial activity in five soils, Environ. Pollut., 196, 321, 10.1016/j.envpol.2014.10.021 Schlich, 2013, Effects of silver nanoparticles and silver nitrate in the earthworm reproduction test, Environ. Toxicol. Chem., 32, 181, 10.1002/etc.2030 Settimio, 2014, Fate and lability of silver in soils: effect of ageing, Environ. Pollut., 191, 151, 10.1016/j.envpol.2014.04.030 Settimio, 2015, Complexation of silver and dissolved organic matter in soil water extracts, Environ. Pollut., 199, 174, 10.1016/j.envpol.2015.01.027 Shoults-Wilson, 2011, Role of particle size and soil type in toxicity of silver nanoparticles to earthworms, Soil Sci. Soc. Am. J., 75, 365, 10.2136/sssaj2010.0127nps Stegemeier, 2015, Speciation matters: bioavailability of silver and silver sulfide nanoparticles to alfalfa (Medicago sativa), Environ. Sci. Technol., 49, 8451, 10.1021/acs.est.5b01147 Sun, 2016, Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials, Environ. Sci. Technol., 50, 4701, 10.1021/acs.est.5b05828 Topuz, 2017, The effect of soil properties on the toxicity and bioaccumulation of Ag nanoparticles and Ag ions in Enchytraeus crypticus, Ecotoxicol. Environ. Saf., 144, 330, 10.1016/j.ecoenv.2017.06.037 Tourinho, 2012, Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates, Environ. Toxicol. Chem., 31, 1679, 10.1002/etc.1880 Unrine, 2010, Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida), Environ. Sci. Technol., 44, 8308, 10.1021/es101885w van der Ploeg, 2014, Effects of silver nanoparticles (NM-300K) on Lumbricus rubellus earthworms and particle characterization in relevant test matrices including soil, Environ. Toxicol. Chem., 33, 743, 10.1002/etc.2487 Vance, 2015, Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory, Beilstein J. Nanotechnol., 6, 1769, 10.3762/bjnano.6.181 Velicogna, 2016, A comparison of the effects of silver nanoparticles and silver nitrate on a suite of soil dwelling organisms in two field soils, Nanotoxicology, 10, 1144, 10.1080/17435390.2016.1181807 Vijver, 2005, The ins and outs of bioaccumulation Waalewijn-Kool, 2014, Bioaccumulation and toxicity of silver nanoparticles and silver nitrate to the soil arthropod Folsomia candida, Ecotoxicology, 23, 1629, 10.1007/s10646-014-1302-y Wang, 2015, Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments, Water Res., 80, 130, 10.1016/j.watres.2015.05.023 Whitley, 2013, Behavior of Ag nanoparticles in soil: effects of particle surface coating, aging and sewage sludge amendment, Environ. Pollut., 182, 141, 10.1016/j.envpol.2013.06.027 Zhang, 2018, Toxicity of a quinaldine-based liquid organic hydrogen carrier (LOHC) system toward soil organisms arthrobacter globiformis and Folsomia candida, Environ. Sci. Technol., 52, 258, 10.1021/acs.est.7b04434