A new test system for unraveling the effects of soil components on the uptake and toxicity of silver nanoparticles (NM-300K) in simulated pore water
Tài liệu tham khảo
Bernot, 2005, Effects of ionic liquids on the survival, movement, and feeding behavior of the freshwater snail, <I>Physa acuta</I>, Environ. Toxicol. Chem., 24, 1759, 10.1897/04-614R.1
Bicho, 2016, Effects of Ag nanomaterials (NM300K) and Ag salt (AgNO3) can be discriminated in a full life cycle long term test with Enchytraeus crypticus, J. Hazard. Mater., 318, 608, 10.1016/j.jhazmat.2016.07.040
Bielská, 2012, Variability of standard artificial soils: physico-chemical properties and phenanthrene desorption measured by means of supercritical fluid extraction, Environ. Pollut., 163, 1, 10.1016/j.envpol.2011.12.009
Bundschuh, 2018, Nanoparticles in the environment: where do we come from, where do we go to?, Environ. Sci. Eur., 30, 10.1186/s12302-018-0132-6
Cai, 2016, A surface tension based method for measuring oil dispersant concentration in seawater, Mar. Pollut. Bull., 109, 49, 10.1016/j.marpolbul.2016.06.028
Colman, 2013, Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario, PLoS One, 8, 10.1371/journal.pone.0057189
Cornelis, 2012, Retention and dissolution of engineered silver nanoparticles in natural soils, Soil Sci. Soc. Am. J., 76, 891, 10.2136/sssaj2011.0360
Cornelis, 2014, Fate and bioavailability of engineered nanoparticles in soils: a review, Crit. Rev. Environ. Sci. Technol., 44, 2720, 10.1080/10643389.2013.829767
Coutris, 2012, Aging and soil organic matter content affect the fate of silver nanoparticles in soil, Sci. Total Environ., 420, 327, 10.1016/j.scitotenv.2012.01.027
Curieses Silvana, 2017, Responses to silver nanoparticles and silver nitrate in a battery of biomarkers measured in coelomocytes and in target tissues of Eisenia fetida earthworms, Ecotoxicol. Environ. Saf., 141, 57, 10.1016/j.ecoenv.2017.03.008
Filser, 2014, Collembola in ecotoxicology-any news or just boring routine?, Appl. Soil Ecol., 83, 193, 10.1016/j.apsoil.2013.07.007
Garcia-Velasco, 2017, Integrative assessment of the effects produced by Ag nanoparticles at different levels of biological complexity in Eisenia fetida maintained in two standard soils (OECD and LUFA 2.3), Chemosphere, 181, 747, 10.1016/j.chemosphere.2017.04.143
Gottschalk, 2015, Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment, Int. J. Environ. Res. Public Health, 12, 5581, 10.3390/ijerph120505581
Harrison, 2014, Using observation-level random effects to model overdispersion in count data in ecology and evolution, PeerJ, 2, e616, 10.7717/peerj.616
Hashimoto, 2017, Chemical speciation of silver (Ag) in soils under aerobic and anaerobic conditions: Ag nanoparticles vs. ionic Ag, J. Hazard. Mater., 322, 318, 10.1016/j.jhazmat.2015.09.001
Heckmann, 2011, Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida, Ecotoxicology, 20, 226, 10.1007/s10646-010-0574-0
Hedberg, 2015, Sorption and dissolution of bare and coated silver nanoparticles in soil suspensions-influence of soil and particle characteristics, J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 50, 891
Hoppe, 2015, Remobilization of sterically stabilized silver nanoparticles from farmland soils determined by column leaching, Eur. J. Soil Sci., 898, 10.1111/ejss.12270
Hoppe, 2016, Retention of sterically and electrosterically stabilized silver nanoparticles by soil minerals, Eur. J. Soil Sci., 67, 573, 10.1111/ejss.12367
Houx, 1996, Acute toxicity test for terrestrial hazard assessment with exposure of Folsomia candida to pesticides in an aqueous medium, Arch. Environ. Contam. Toxicol., 30, 9, 10.1007/BF00211323
Kim, 2001, Wetting and absorbency of nonionic surfactant solutions on cotton fabrics, Colloids Surf. A Physicochem. Eng. Asp., 187–188, 385, 10.1016/S0927-7757(01)00653-7
Klaine, 2008, Nanomaterials in the environment: behavior, fate, bioavailability, and effects, Environ. Toxicol. Chem., 27, 1825, 10.1897/08-090.1
Klein, 2011
Klitzke, 2015, The fate of silver nanoparticles in soil solution - sorption of solutes and aggregation, Sci. Total Environ., 535, 54, 10.1016/j.scitotenv.2014.10.108
Köser
Köser, 2017, Predictability of silver nanoparticle speciation and toxicity in ecotoxicological media, Environ. Sci. Nano, 4, 1470, 10.1039/C7EN00026J
Levard, 2012, Environmental transformations of silver nanoparticles: impact on stability and toxicity, Environ. Sci. Technol., 46, 6900, 10.1021/es2037405
Li, 1971, Permeation through liquid surfactant membranes, Am. Inst. Chem. Eng. J., 17, 459, 10.1002/aic.690170239
Liu, 2010, Ion release kinetics and particle persistence in aqueous nano silver colloids, Environ. Sci. Technol., 44, 2169, 10.1021/es9035557
Liu, 2012, 9887
McKee, 2016, Impacts of metal-based engineered nanomaterials on soil communities, Environ. Sci. Nano, 3, 506, 10.1039/C6EN00007J
McKee, 2017, Collembola reproduction decreases with aging of silver nanoparticles in a sewage sludge-treated soil, Front. Environ. Sci., 5, 1, 10.3389/fenvs.2017.00019
Mendes, 2014, Oxidative stress biomarkers and metallothionein in Folsomia candida - responses to cu and cd, Environ. Res., 133, 164, 10.1016/j.envres.2014.05.027
Meyer, 2010, Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans, Aquat. Toxicol., 100, 140, 10.1016/j.aquatox.2010.07.016
Organisation for Economic Co-operation and Development, 2016
Ranke, 2004, Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays, Ecotoxicol. Environ. Saf., 58, 396, 10.1016/S0147-6513(03)00105-2
Reynolds, 1970, Binding of dodecyl sulfate to proteins at high binding ratios. Possible implications for the state of proteins in biological membranes, Proc. Natl. Acad. Sci., 66, 1002, 10.1073/pnas.66.3.1002
Roh, 2009, Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics, Environ. Sci. Technol., 43, 3933, 10.1021/es803477u
Sakka, 2016, How test vessel properties affect the fate of silver nitrate and sterically stabilized silver nanoparticles in two different test designs used for acute tests with Daphnia magna, Environ. Sci. Pollut. Res., 1
Schlich, 2015, Influence of soil properties on the effect of silver nanomaterials on microbial activity in five soils, Environ. Pollut., 196, 321, 10.1016/j.envpol.2014.10.021
Schlich, 2013, Effects of silver nanoparticles and silver nitrate in the earthworm reproduction test, Environ. Toxicol. Chem., 32, 181, 10.1002/etc.2030
Settimio, 2014, Fate and lability of silver in soils: effect of ageing, Environ. Pollut., 191, 151, 10.1016/j.envpol.2014.04.030
Settimio, 2015, Complexation of silver and dissolved organic matter in soil water extracts, Environ. Pollut., 199, 174, 10.1016/j.envpol.2015.01.027
Shoults-Wilson, 2011, Role of particle size and soil type in toxicity of silver nanoparticles to earthworms, Soil Sci. Soc. Am. J., 75, 365, 10.2136/sssaj2010.0127nps
Stegemeier, 2015, Speciation matters: bioavailability of silver and silver sulfide nanoparticles to alfalfa (Medicago sativa), Environ. Sci. Technol., 49, 8451, 10.1021/acs.est.5b01147
Sun, 2016, Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials, Environ. Sci. Technol., 50, 4701, 10.1021/acs.est.5b05828
Topuz, 2017, The effect of soil properties on the toxicity and bioaccumulation of Ag nanoparticles and Ag ions in Enchytraeus crypticus, Ecotoxicol. Environ. Saf., 144, 330, 10.1016/j.ecoenv.2017.06.037
Tourinho, 2012, Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates, Environ. Toxicol. Chem., 31, 1679, 10.1002/etc.1880
Unrine, 2010, Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida), Environ. Sci. Technol., 44, 8308, 10.1021/es101885w
van der Ploeg, 2014, Effects of silver nanoparticles (NM-300K) on Lumbricus rubellus earthworms and particle characterization in relevant test matrices including soil, Environ. Toxicol. Chem., 33, 743, 10.1002/etc.2487
Vance, 2015, Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory, Beilstein J. Nanotechnol., 6, 1769, 10.3762/bjnano.6.181
Velicogna, 2016, A comparison of the effects of silver nanoparticles and silver nitrate on a suite of soil dwelling organisms in two field soils, Nanotoxicology, 10, 1144, 10.1080/17435390.2016.1181807
Vijver, 2005, The ins and outs of bioaccumulation
Waalewijn-Kool, 2014, Bioaccumulation and toxicity of silver nanoparticles and silver nitrate to the soil arthropod Folsomia candida, Ecotoxicology, 23, 1629, 10.1007/s10646-014-1302-y
Wang, 2015, Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments, Water Res., 80, 130, 10.1016/j.watres.2015.05.023
Whitley, 2013, Behavior of Ag nanoparticles in soil: effects of particle surface coating, aging and sewage sludge amendment, Environ. Pollut., 182, 141, 10.1016/j.envpol.2013.06.027
Zhang, 2018, Toxicity of a quinaldine-based liquid organic hydrogen carrier (LOHC) system toward soil organisms arthrobacter globiformis and Folsomia candida, Environ. Sci. Technol., 52, 258, 10.1021/acs.est.7b04434