Nano-capillary electrophoresis for environmental analysis

Springer Science and Business Media LLC - Tập 14 - Trang 79-98 - 2015
Imran Ali1, Omar M. L. Alharbi2, Mohd. Marsin Sanagi3,4
1Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
2Biology Department, Faculty of Sciences, Taibah University, Madinah Al-Munawarah, Saudi Arabia
3Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
4Ibnu Sina Institute for Fundamental Science Studies, Nanotechnology Research Alliance, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia

Tóm tắt

Many analytical techniques have been used to monitor environmental pollutants. But most techniques are not capable to detect pollutants at nanogram levels. Hence, under such conditions, absence of pollutants is often assumed, whereas pollutants are in fact present at low but undetectable concentrations. Detection at low levels may be done by nano-capillary electrophoresis, also named microchip electrophoresis. Here, we review the analysis of pollutants by nano-capillary electrophoresis. We present instrumentations, applications, optimizations and separation mechanisms. We discuss the analysis of metal ions, pesticides, polycyclic aromatic hydrocarbons, explosives, viruses, bacteria and other contaminants. Detectors include ultraviolet–visible, fluorescent, conductivity, atomic absorption spectroscopy, refractive index, atomic fluorescence spectrometry, atomic emission spectroscopy, inductively coupled plasma, inductively coupled plasma–mass spectrometry, mass spectrometry, time-of-flight mass spectrometry and nuclear magnetic resonance. Detection limits ranged from nanogram to picogram levels.

Tài liệu tham khảo

Alarie JP, Jacobson SC, Ramsey JM (2001) Electrophoretic injection bias in microchip valving scheme. Electrophoresis 22:312–317. doi:10.1002/1522-2683(200101)22:2<312 Ali I, Aboul-Enein HY (2004) Chiral pollutants: Distribution, toxicity and analysis by chromatography and capillary electrophoresis. Wiley, Chichester. ISBN 0-470-86780-9 Ali I, Aboul-Enein HY (2006) Instrumental methods in metal ions speciation: chromatography capillary electrophoresis and electrochemistry. Taylor & Francis Ltd., New York. ISBN 0-8493-3736-4 Ali I, Gupta VK, Aboul-Enein HY, Hussain A (2008) A Hyphenation in sample preparation: advancement from the micro to the nano world. J Sep Sci 31:2040–2053. doi:10.1002/jssc.200800123 Ali I, Aboul-Enein HY, Gupta VK (2009) Nano Chromatography and Capillary Electrophoresis Pharmaceutical and Environmental Analyses. Wiley, Hoboken. ISBN 978-0-470-17851-5 Alves Brito-Neto JG, da Silva JAF, Blanes L, do Lago CL (2005) Understanding capacitively coupled contactless conductivity detection in capillary and microchip. Electrophoresis 17:1198–1206. doi:10.1002/elan.200503237 Alves-Segundo R, Ibanez-Garcia N, Baeza M, Puyol M, Alonso-Chamarro J (2011) Towards a monolithically integrated microsystem based on the green tape ceramics technology for spectrophotometric measurements Determination of chromium (VI) in water. Microchim Acta 172:225–232. doi:10.1007/s00604-010-0459-1 Amanda MS, Thomas NC, James RS, Richard AM (2009) Polycyclic aromatic hydrocarbon analysis with the mars organic analyzer microchip capillary electrophoresis system. Anal Chem 81:790–796. doi:10.1021/ac802033u Arne T (1937) A new apparatus for electrophoretic analysis of colloidal mixtures. Trans Fara Soc 33:524–531. doi:10.1039/TF93733FP001 Augustin V, Proczek G, Dugay J, Descroix S, Hennion MC (2007) Online preconcentration using monoliths in electrochromatography capillary format and microchips. J Sep Sci 30:2858–2865. doi:10.1002/jssc.200700387 Bai X, Lee HJ, Rossier JS, Reymond F, Schafer H, Wossner M, Girault HH (2002) Pressure pinched injection of nanolitre volumes in planar micro-analytical devices. Lab Chip 2:45–49. doi:10.1039/B109247B Benhabib M, Chiesl TN, Stockton AM, Scherer JR, Mathies RA (2010) Multichannel capillary electrophoresis micro-device and instrumentation for in situ planetary analysis of organic molecules and biomarkers. Anal Chem 82:2372–2379. doi:10.1021/ac9025994 Beyor N, Yi LN, Seo TS, Mathies RA (2009) Integrated capture concentration polymerase chain reaction and capillary electrophoretic analysis of pathogens on a chip. Anal Chem 81:3523–3528. doi:10.1021/ac900060r Brivio M, Oosterbroek RE, Verboom W, van den Berg A, Reinhoudt DN (2005) Simple chip-based interfaces for on-line monitoring of supramolecular interactions by nano-ESI MS. Lab Chip 5:1111–1122. doi:10.1039/B510534J Brocke AV, Nicholson G, Bayer E (2001) Recent advances in capillary electrophoresis/electrospray-mass spectrometry. Electrophoresis 22:1251–1266. doi:10.1002/1522-2683(200105)22:7<1251 Bromberg A, Mathies RA (2003) Homogeneous immunoassay for detection of TNT and its analogues on a microfabricated capillary. Electrophor Chip Anal Chem 75:1188–1195. doi:10.1021/ac020599g Bromberg A, Mathies RA (2004) Multichannel homogeneous immunoassay for detection of 2,4,6-trinitrotoluene (TNT) using a microfabricated capillary array electrophoresis chip. Electrophoresis 25:1895–1900. doi:10.1021/ac020599g Broyles BS, Jacobson SC, Ramsey JM (2003) Sample filtration, concentration, and separation integrated on microfluidic devices. Anal Chem 75:2761–2767. doi:10.1021/ac025503x Buettgenbach S, Wilke R (2005) A Capillary electrophoresis chip with hydrodynamic sample injection for measurements from a continuous sample flow. Anal Bioanal Chem 383:733–737. doi:10.1007/s00216-005-3346-6 Büttgenbach S, Michalzik M, Wilke R (2006) New approaches to online bioprocess monitoring. Eng Life Sci 6:449–454. doi:10.1002/elsc.200620150 Castro ER, Manz A (2015) Present state of microchip electrophoresis State of the art and routine applications. J Chromatogr A 1382:66–85. doi:10.1016/j.chroma.2014.11.034 Chen G, Lin Y, Wang J (2006) Microchip capillary electrophoresis with electrochemical detection for monitoring environmental pollutants. Curr Anal Chem 2:43–50. doi:10.2174/157341106775197439 Chen Z, Li Q, Li O, Zhou X, Lan Y, Wei Y, Mo J (2007) A thin cover glass chip for contactless conductivity detection in microchip capillary electrophoresis. Talanta 71:1944–1950 Chin CD, Linder V, Sia SK (2007) Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 7:41–57. doi:10.1039/B611455E Cho SI, Lee SH, Chung DS, Kim YK (2005) Bias-free pneumatic sample injection in microchip electrophoresis. J Chromatogr A 1063:253–256. doi:10.1016/j.chroma.2004.11.08 Chun-Chee L, Jue-Liang H, Gwo-Bin L (2011) Sample pre-concentration in microfluidic devices. Microfluid Nanofluid 10:481–511. doi:10.1007/s10404-008-0391-4 Constantin S, Freitag R, Solignac D, Sayah A, Gijs MAM (2001) Utilization of the sol–gel technique for the development of novel stationary phases for capillary electrochromatography on a chip. Sens Actuators B 78:267–272. doi:10.1016/S0925-4005(01)00824-3 Dharmasiri U, Witek MA, Adams AA, Osiri JK, Hupert ML, Bianchi TS, Roelke DL, Soper SA (2010) Enrichment and detection of Escherichia coli O157:H7 from water samples using an antibody modified microfluidic chip. Anal Chem 82:2844–2849. doi:10.1021/ac100323k Ding YS, Rogers K (2010) Determination of haloacetic acids in water using solid-phase extraction/microchip capillary electrophoresis with capacitively coupled contactless conductivity detection. Electrophoresis 31:2602–2607. doi:10.1002/elps.200900496 Ding Y, Garcia CD, Rogers K (2008) Poly(dimethylsiloxane) microchip electrophoresis with contactless conductivity detection for measurement of chemical warfare agent degradation products. Anal Let 41:335–350. doi:10.4155/bio.12.118 Doherty EA, Meagher RJ, Albarghouthi MN, Barron AE (2003) Microchannel wall coatings for protein separations by capillary and chip electrophoresis. Electrophoresis 24:34–54. doi:10.1002/elps.200390029 Dossi N, Susmel S, Toniolo R, Pizzariello A, Bontempelli G (2009) Application of microchip electrophoresis with electrochemical detection to environmental aldehyde monitoring. Electrophoresis 30:3465–3471. doi:10.1002/elps.200900297 Duffus JH (2002) Heavy metals—a meaningless term? (IUPAC Technical Report). Pure Appl Chem 74:793–807. doi:10.1351/pac200274050793 Ebersole RC, McCormick RM (1993) Biotechnol separation and isolation of viable bacteria by capillary zone. Electrophoresis 11:1278–1282. doi:10.1038/nbt1193-1278 Edel JB, Beard NP, Hofmann O, deMello JC, Bradley DD, deMello AJ (2004) Thin-film polymer light emitting diodes as integrated excitation sources for microscale capillary electrophoresis. Lab Chip 4:136–140. doi:10.1039/B313503A European commission (2002) Opinion of the scientific committee on food on the risks to human health of polycyclic aromatic hydrocarbons in food SCF/CS/CNTM/PAF/29/Final, 4 December. doi:10.2903/j.efsa.2008.724 Evenhuis CJ, Guijt RM, Macka M, Haddad PR (2004) Determination of inorganic ions using microfluidic devices. Electrophoresis 25:3602–3624. doi:10.1002/elps.200406120 Fang Q (2004) Sample introduction for microfluidic systems. Anal Bioanal Chem 378:49–51. doi:10.1007/s00216-003-2321-3 Fang Q, Wang FR, Wang SL, Liu SS, Xu SK, Fang ZL (1999) Sequential injection sample introduction microfluidic-chip based capillary electrophoresis system. Anal Chim Acta 390:27–37. doi:10.1016/S0003-2670(99)00183-X Feng HT, Wei HP, Li SF (2004) On-chip potential gradient detection with a portable capillary electrophoresis system. Electrophoresis 25:909–913. doi:10.1002/elps.200305734 Ferey L, Delaunay N (2015) Capillary and microchip electrophoretic analysis of polycyclic aromatic hydrocarbons. Anal Bioanal Chem 407:2727–2747. doi:10.1007/s00216-014-8390-7 Fintschenko Y, Choi WY, Ngola S, Shepodd T, Fres J (2001) Chip electrochromatography of polycyclic aromatic hydrocarbons on an acrylate-based UV-initiated porous polymer monolith. Anal Chem 371:174–181. doi:10.1007/s002160100948 Fleger M, Siepe D, Neyer A (2004) Microfabricated polymer analysis chip for optical detection. IEE Proc Nanobiotechnol 151:159–161. doi:10.1049/ip-nbt:20040402 Fredrickson CK, Fan ZH (2004) Macro to micri interfaces for micro fluidic devices. Lab Chip 6:526–533. doi:10.1039/B410720A Futterer C, Minc N, Bormuth V, Codarbox JH, Laval P, Rossier Viovy JL (2004) Injection and flow control system for microchannels. Lab Chip 4:351–365. doi:10.1039/B316729A Gai H, Yu L, Dai Z, Ma Y, Lin BC (2004) Injection by hydrostatic pressure in conjunction with electrokinetic force on a microfluidic chip. Electrophoresis 25:1888–1894. doi:10.1002/elps.200305835 Garcia CD, Henry CS (2007) Coupling electrochemical detection with microchip capillary electrophoresis. Bio-MEMS 265-297. ISBN:13:978-1-4200-1867-7 Gaudry AJ, Nai YH, Guij RM, Breadmore MC (2014) Polymeric microchip for the simultaneous determination of anions and cations by hydrodynamic injection using a dual-channel sequential injection microchip electrophoresis system. Anal Chem 86:3380–3388. doi:10.1021/ac403627g Gertsch JC, Cropek DM, Henry CS (2010) Rapid analysis of perchlorate in drinking water at parts per billion levels using microchip electrophoresis. Anal Chem 82:3426–3429. doi:10.1021/ac9029086 Giordano BC, Burgi DS, Hart SJ, Terray A (2012) On-line sample pre-concentration in microfluidic devices Anal. Chim Acta 718:11–24. doi:10.1016/j.aca.2011.12.050 Gong M, Wehmeyer KR, Limbach PA, Arias F, Heineman WR (2006) On-line sample preconcentration using field-amplified stacking injection in microchip capillary electrophoresis. Anal Chem 78:3730–3737. doi:10.1021/ac0521798 Guihen E, O’Connor WT (2010) Capillary and microchip electrophoresis in microdialysis recent applications. Electrophoresis 31:55–64. doi:10.1002/elps.200900467 Ha K, Joo GS, Jha SK, Kim YS (2009) Microelectron Eng Monitoring of endocrine disruptors by capillary electrophoresis amperometric detector. Microelectron Eng 86:14071410. doi:10.1016/j.mee.2009.02.025 He Q, Fang Q, Fang Z (2006) Sample introduction techniques for microfluidic chip-based capillary electrophoresis. Fenxi Huaxue 34:729–734. doi:10.1039/b511924c Henares TG, Takaishi M, Yoshida N, Terabe S, Mizutani F, Sekizawa R, Hisamoto H (2007) Integration of multianalyte sensing functions on a capillary-assembled microchip? Simultaneous determination of ion concentrations and enzymatic activities by a “Drop-and-Sip” technique. Anal Chem 79:908–915. doi:10.1021/ac061245i Hisamoto H, Takeda S, Terabe S (2006) Capillary-assembled microchip as an on-line deproteinization device for capillary electrophoresis. Anal Bioanal Chem 386:733–738. doi:10.1007/s00216-006-0331-7 Huang XJ, Pu QS, Fang ZL (2001) The home of premier fundamental discoveries, inventions and applications in the analytical and bioanalytical sciences. Analyst 126:281–284. doi:10.1039/C5AN01392E Huang FC, Liao CS, Lee GB (2006) An integrated microfluidic chip for DNA/RNA amplification, electrophoresis separation and on-line optical detection. Electrophoresis 27:3297–3305. doi:10.1371/journal.pone.0042203 Hui AYN, Wang G, Lin B, Chan WT (2006) Interface of chip-based capillary electrophoresis-inductively coupled plasma-atomic emission spectrometry (CE-ICP-AES). J Anal (CE-ICP-AES) 21:134–140. doi:10.1039/B509080F Huikko K, Kostiainen R, Kotiaho T (2003) Introduction to micro analytical systems Bioanalytical and pharmaceutical applications. Eur J Pharm Sci 20:149–171. doi:10.1016/S0928-0987(03)00147-7 International Agency for Research on Cancer IARC monographs on the evaluation of carcinogenic risks of chemicals to humans, overall evaluation of carcinogenicity: (1987) An updating of IARC monographs, Vol. 1 to 42, Suppl 7. IARC, World Health Organization, Lyon. ISBN 92 832 12428 International Agency for Research on Cancer, IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans (1983) vol 32. IARC World Health Organization (WHO) Lyon. ISBN 92832 12320 Islam K, Jha SK, Chand R, Han D, Kim YS (2012) Fast detection of triazine herbicides on a microfluidic chip using capillary electrophoresis pulse amperometric detection. Microelectro Eng 97:391–395. doi:10.1016/j.mee.2012.03.034 Islam K, Chand R, Han D, Kim YS (2015) Microchip capillary electrophoresis based electroanalysis of triazine herbicides. Bull Environ Contam Toxicol 94:41–45. doi:10.1007/s00128-014-1378-3 Ito T, Inoue A, Sato K, Hosokawa K, Maeda M (2005) Autonomous polymer loading and sample injection for microchip electrophoresis. Anal Chem 77:4759–4764. doi:10.1021/ac050122f Jiang H, Daghighi Y, Chon CH, Li DQ (2010) Concentrating molecules in a simple microchannel. J Colloid Interface Sci 347:324–331. doi:10.1016/j.jcis.2010.03.062 Epub 2010 Apr 2 Jin Y, Luo GA, Wang R (2000) Development of integrated capillary electrophoresis chips. J Sep Sci 18:313–317. doi:10.1002/elps.1150181211 Jokerst JC, Emory JM, Henry CS (2012) Advances in microfluidics for environmental analysis. Analyst 137:24–34. doi:10.1039/c1an15368d Karlinsey JM (2012) Sample introduction techniques for microchip electrophoresis: a review. Anal Chim Acta 725:1–13. doi:10.1016/j.aca.2012.02.052 Kenyon SM, Meighan MM, Hayes MA (2011) Recent developments in electrophoretic separations on microfluidic devices. Electrophoresis 32:482–493. doi:10.1002/elps.201000469 Kitagawa F, Otsuka K (2011) Recent progress in microchip electrophoresis-mass spectrometry. J Pharm Biomed Anal 55:668–678. doi:10.1016/j.jpba.2010.11.013 Kitagawa F, Kawai T, Sueyoshi K, Otsuka K (2012) Recent progress of on-line sample preconcentration techniques in microchip electrophoresis. Anal Sci 28:85–93. doi:10.1002/jssc.200800272 Kohlheyer D, Eijkel JCT, Schlautmann S, van den Berg A, Schasfoort RBM (2008) Bubble-free operation of a microfluidic free-flow electrophoresis chip with integrated Pt electrodes. Anal Chem 80:4111–4118. doi:10.1021/ac800275c Kolivoska V, Weiss VU, Kremser L, Gas B, Blaas D, Kenndler E (2007) Electrophoresis on a microfluidic chip for analysis of fluorescence-labeled human rhinovirus. Electrophoresis 28:4734–4740. doi:10.1002/elps.200700397 Kong J, Shin MS, (2004) Multi-functional test sample injection apparatus for capillary electrophoresis microchip Repub Korean Kongkae Taeho Kongbo KR 2004005465 A 20040116. IPC: G01N 27/453 Kutter JP, Ramsey RS, Jacobson SC, Ramsey JM (1998) Microcol determination of metal cations in microchip electrophoresis using on-chip complexation and sample stacking. J Sep Sci 10:313–319. doi:10.1002/(SICI)1520-667X(1998)10:4<313:AID-MCS1>3.0.CO;2-J Lagally ET, Scherer JR, Blazej RG, Toriello NM, Diep BA, Ramchandani M, Sensabaugh GF, Riley LW, Mathies R (2004) Integrated portable genetic analysis microsystem for pathogen/infectious disease detection. Anal Chem 76:3162–3170. doi:10.1021/ac035310p Law WS, Tay ETT, Feng H, Yu L, Zhao J, Hong L, Sam FY (2007) Rapid identification of purified enteropathogenic Escherichia coli by microchip electrophoresis. J Sep Sci 30:1446–1452. doi:10.1002/jssc.200600452 Law WS, Li SFY, Kricka LJ (2009) Detection of enteropathogenic Escherichia coli by microchip capillary electrophoresis. Meth Mole Biol 509:169–179. doi:10.1007/978-1-59745-372-1_12 Lazar IM, Ramsey RS, Jacobson SC, Foote RS, Ramsey JM (2000) Novel microfabricated device for electrokinetically induced pressure flow and electrospray ionization mass spectrometry. J Chromatogr A 892:195–201. doi:10.1016/S0021-9673(00)00335-6 Lazar IM, Li L, Yang Y, Karger BL (2003) Microfluidic device for capillary electrochromatography–mass spectrometry. Electrophoresis 24:3655–3662. doi:10.1002/elps.200305609 Lazar IM, Grym J, Foret F (2006) Microfabricated devices: a new sample introduction approach to mass spectrometry. Mass Spectrom Rev 25:573–594. doi:10.1002/mas.20081 Le Saux T, Hisamoto H, Terabe S (2006) A measurement of monomolecular binding constants of neutral phenols into the ß-cyclodextrin by continuous frontal analysis in capillary and microchip electrophoresis via a competitive assay. J Chromatogr A 1104:352–358. doi:10.1016/j.chroma.2005.11.125 Li F, Wang DD, Yan XP, Lin JM, Su RG (2005a) Development of a new hybrid technique for rapid speciation analysis by directly interfacing a microfluidic chip-based capillary electrophoresis system to atomic fluorescence spectrometry. Electrophoresis 26:2261–2268. doi:10.1002/elps.200410382 Li F, Wang DD, Yan XP, Su RG, Lin JM (2005b) A speciation analysis of inorganic arsenic by microchip capillary electrophoresis coupled with hydride generation atomic fluorescence spectrometry. J Chromatogr 1081:232–237. doi:10.1016/j.chroma.2005.05.037 Liu BF (2003) Chemiluminescence detection for a microchip capillary electrophoresis system fabricated in poly(dimethylsiloxane). Anal Chem 75:36–41. doi:10.1021/ac026096s Liu B, Zhang Y, Mayer D, Krause HJ, Jin Q, Zhao J, Offenhausser A, Xu Y (2012) Determination of heavy metal ions by microchip capillary electrophoresis coupled with contactless conductivity detection. Electrophoresis 33:1247–1250. doi:10.1002/elps.201100626 Long Z, Shen Z, Wu D, Qin J, Lin B (2007) Integrated multilayer microfluidic device with a nanoporous membrane interconnect for online coupling of solid-phase extraction to microchip electrophoresis. Lab Chip 7:1819–1824. doi:10.1039/B711741H Lu Q, Collins GE, Evans T, Hammond M, Wang J, Mulchandani A (2004) Vapor and liquid phase detection of cyanide on a microchip. Electrophoresis 25:116–122. doi:10.1002/elps.200305710 Mahabadi KA, Rodriguez I, Lim CY, Maurya DK, Hauser PC, De Rooij NF (2010) Capacitively coupled contactless conductivity detection with dual top–bottom cell configuration for microchip electrophoresis. Electrophoresis 31:1063–1070. doi:10.1002/elps.200900578 Manz A (2008) Predicting the future. A Lab Chip 8:13–14. doi:10.1039/B718103P Manz A, Becker H (eds) (1992) Microsystem technology in chemistry and life sciences. Springer, Berlin. ISBN 978-3-540-69544-8 Manz A, Harrison DJ, Verpoorte EMJ, Fettinger JC, Paulus A, Ludi H, Winder M (1992) Planar chip technology for miniaturization and integration of separation techniques into Monitoring Systems. Capillary electrophoresis on a chip. J Chromatogr A 593:253–258. doi:10.1016/0021-9673(92)80293-4 Masar M, Bomastyk B, Bodor R, Horciciak M, Danc L, Troska P, Kuss H (2012) Determination of chloride, sulfate and nitrate in drinking water by microchip electrophoresis. Microchim Acta 177:309–316. doi:10.1007/s00604-012-0788-3 Matusiewicz H, Ślachciński M (2012) Development of a new hybrid technique for inorganic arsenic speciation analysis by microchip capillary electrophoresis coupled with hydride generation microwave induced plasma spectrometry. Microchem J 102:61–67. doi:10.1016/j.microc.2011.11.010 Meng Y, Yong Y, Feng S, Karsten D, Weihai F, Qinglong L (2010) Detection of copper ion with laser-induced fluorescence in a capillary electrophoresis microchip. Anal Lett 43:2883–2891. doi:10.1080/00032711003763657 Mijatovic D, Eijkel JC, van den Berg A (2005) A Technologies for nanofluidic systems top-down vs bottom-up—a review. Lab Chip 5:492–500. doi:10.1039/B416951D Muck A Jr, Wang J, Jacobs M, Chen G, Chatrathi MP, Jurka V, Vyborny Z, Spillman SD, Sridharan G, Schöning MJ (2004) Fabrication of poly(methyl methacrylate) microfluidic chips by atmospheric molding. Anal Chem 76:2290–2297. doi:10.1021/ac035030+ Nikcevic I, Lee SH, Piruska A, Ahn CH, Ridgway TH, Limbach PA, Wehmeyer KR, Heineman WR, Seliskar CJ (2007) A characterization and performance of injection molded poly(methylmethacrylate) microchips for capillary electrophoresis. Chromatogr J 1154:444–453. doi:10.1016/j.chroma.2007.03.125 Nischang I, Tallarek U (2007) Fluid dynamics in capillary and chip electrochromatography. Electrophoresis 28:611–626. doi:10.1002/elps.200600625 Noblitt SD, Henry CS (2008) Improving the compatibility of contact conductivity detection with microchip electrophoresis using a bubble cell. Anal Chem 80:7624–7630. doi:10.1021/ac8013862 Noblitt SD, Schwandner FM, Hering SV, Collett JL, Henry CS (2009) A High-sensitivity microchip electrophoresis determination of inorganic anions and oxalate in atmospheric aerosols with adjustable selectivity and conductivity detection. Chromatogr J 1216:1503–1510. doi:10.1016/j.chroma.2008.12.084 Nogami T, Hashimoto M, Tsukagoshi K (2007) Metal ion analysis using microchip CE with chemiluminescence detection based on 1, 10-phenanthroline-hydrogen peroxide reaction. J Sep Sci 32:408–412. doi:10.1002/jssc.200800448 Noh HB, Lee KS, Lim BS, Kim SJ, Shim YB (2010) Total analysis of endocrine disruptors in a microchip with gold nanoparticles. Electrophoresis 31:3053–3060. doi:10.1002/elps.201000112 Nuchtavorn N, Smejkal P, Breadmore MC, Guijt RM, Doble P, Bek F, Foret F, Suntornsuk L, Macka M (2013) Exploring chip-capillary electrophoresis-laser-induced fluorescence field-deployable platform flexibility: separations of fluorescent dyes by chip-based non-aqueous capillary electrophoresis. J Chromatogr A 1286:216–221. doi:10.1016/j.chroma.2013.02.060 Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7:1644–1659. doi:10.1039/B712784G Pennathur S, Meinhart CD, Soh HT (2008) How to exploit the features of microfluidics technology. Lab Chip 8:20–22. doi:10.1039/B717986N Pumera M (2006a) Analysis of nerve agents using capillary electrophoresis and laboratory-on-a-chip technology. J Chromatogr A 1113:5–13. doi:10.1016/j.chroma.2006.02.048 Pumera M (2006b) Analysis of explosives via microchip electrophoresis and conventional capillary electrophoresis: a review. Electrophoresis 27:244–256. doi:10.1002/elps.200500609 Pumera M (2007) Contactless conductivity detection for microfluidics: designs and applications. Talanta 74:358–364. doi:10.1016/j.talanta.2007.05.058 Pumera M (2008) Trends in analysis of explosives by microchip electrophoresis and conventional CE. Electrophoresis 29:269–273. doi:10.1002/elps.200700394 Ramsey JD, Collins GE (2005) Integrated microfluidic device for solid-phase extraction coupled to micellar electrokinetic chromatography separation. Anal Chem 77:6664–6670. doi:10.1021/ac0507789 Ramsey RS, Ramsey JM (1997) Generating electrospray from microchip devices using electroosmotic pumping. Anal Chem 69:1174–1178. doi:10.1021/ac9610671 Regnier FE, He B, Lin S, Busse J (1999) Chromatography and electrophoresis on chips critical elements of future integrated, microfluidic analytical systems for life science. Trends Biotechnol 17:101–106. doi:10.1016/S0167-7799(98)01294-3 Rohlícek V, Deyl Z (2002) Versatile tool for the manipulation of electrophoresis chips. J Chromatogr B 770:19–23. doi:10.1016/S0378-4347(01)00377-2 Rojas M, Marie B, Vignaud JM, Martinet N, Siat J, Grosdidier G, Cascorbi I, Alexandrov K (2004) Induction of cell death, DNA strand breaks, and cell cycle arrest in DU145 human prostate carcinoma cell line by benzo[a]pyrene and benzo[a]pyrene-7,8-diol-9,10-epoxide. Cancer Lett 207:157–163. doi:10.3390/ijerph2007010002 Ryvolová M, Macka M, Ryvolová M, Preisler J, Macka M (2010) Portable capillary-based (non-chip) capillary electrophoresis. Trends Anal Chem 29:339–353. doi:10.1016/j.trac.2009.12.010 Saito RM, Coltro WKT, de Jesus DP (2012) Instrumentation design for hydrodynamic sample injection in microchip electrophoresis: a review. Electrophoresis 33:2614–2623. doi:10.1002/elps.201200089 Sanghavi BJ, Sitaula S, Griep MH, Karna SP, Ali MF, Swami NS (2013a) Real-time electrochemical monitoring of adenosine triphosphate in the picomolar to micromolar range using graphene-modified electrodes. Anal Chem 85:8158–8165. doi:10.1021/ac4011205 Sanghavi BJ, Mobin SM, Mathur P, Lahiri GK, Srivastava AK (2013b) Biomimetic sensor for certain catecholamines employing copper(II) complex and silver nanoparticle modified glassy carbon paste electrode. Biosens Bioelectron 39:124–132. doi:10.1016/j.bios.2012.07.008 Sanghavi BJ, Varhue W, Chávez JL, Chou CF, Swami NS (2014) Electrokinetic preconcentration and detection of neuropeptides at patterned graphene-modified electrodes in a nanochannel. Anal Chem 86:4120–4125. doi:10.1021/ac500155g Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Review: nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41. doi:10.1007/s00604-014-1308-4 Shen H, Fang Q, Fang ZL (2006) A microfluidic chip based sequential injection system with trapped droplet liquid–liquid extraction and chemiluminescence detection. Lab Chip 6:1387–1389. doi:10.1039/B605332G Shen SL, Li Y, Wakida S (2010) Characterization of dissolved organic carbon at low levels in environmental waters by microfluidic-chip-based capillary gel electrophoresis with a laser-induced fluorescence detector. Environ Monit Assess 166:573–580. doi:10.1007/s10661-009-1024-4 Shin KS, Kim YH, Ah-Min J, Kwak SM, Kima SK, Yang EG, Park JH, Ju BK, Kim TS, Kang JY (2006) Miniaturized fluorescence detection chip for capillary electrophoresis immunoassay of agricultural herbicide atrazine. Anal Chim Acta 573:164–171. doi:10.1016/j.aca.2006.05.099 Solignac D, Gijs MAM (2003) Pressure pulse injection: a powerful alternative to electrokinetic sample loading in electrophoresis microchips. Anal Chem 75:1652–1657. doi:10.1021/ac026350g Som-Aum W, Li H, Liu JJ, Lin JM (2008) Analyst determination of arsenate by sorption pre-concentration on polystyrene beads packed in a microfluidic device with chemiluminescence detection. Analyst 133:1169–1175. doi:10.1039/b801608a Stachowiak TB, Svec F, Frechet JMJJ (2004) Chip electrochromatography. J Chromatogr A 1044:97–111. doi:10.1016/j.chroma.2004.04.075 Stoeppler M (1992) Hazardous metals in the environment. Elsevier, Amsterdam. ISBN 0-12-731850-X Sueyoshi K, Kitagawa F, Otsuka K (2008a) High-performance microchip electrophoresis by using on-line sample preconcentration and partial filling techniques. Bunseki Kagaku 57:1001–1010. doi:10.2116/bunsekikagaku.57.1001 Sueyoshi K, Kitagawa F, Otsuka K (2008b) Recent progress of online sample preconcentration techniques in microchip electrophoresis. J Sep Sci 31:2650–2666. doi:10.1002/jssc.200800272 Sueyoshi K, Kitagawa F, Otsuka K (2008c) On-line sample preconcentration and separation technique based on transient trapping in microchip micellar electrokinetic chromatography. Anal Chem 80:1255–1262. doi:10.1021/ac702049r Sung WC, Makamba H, Chen SH (2005) Chip-based microfluidic devices coupled with electrospray ionization-mass spectrometry. Electrophoresis 26:1783–1791. doi:10.1002/elps.200410346 Tsai NC, Su CY (2006) SU-8 based continuous-flow RT-PCR bio-chips under high-precision temperature control. Biosens Bioelectron 22:313–317. doi:10.1016/j.bios.2005.12.023 Ujiie T, Kikuchi T, Ichiki T, Horiike Y, Jpn J (2000) Fabrication of quartz microcapillary electrophoresis chips using plasma etching. Appl Phys 3:3677–3682. doi:10.1143/JJAP.39.3677 Van Midwoud PM, Verpoorte E (2008) Implementing sample pre-concentration in microfluidic devices. In: Landers JP (ed) Handbook of Capillary and microchip electrophoresis and associated microtechniques, 3rd edn. CRC Press-Taylor & Francis Group, Boca Raton, pp 1375–1417. ISBN 978-0-84-93-3329-3 Vogt O, Pfister M, Marggraf U, Neyer A, Hergenroder R, Jacob P (2005) A new two-chip concept for continuous measurements on PMMA-microchips. Lab Chip 5:205. doi:10.1039/B411739P Vrouwe EX, Luttge R, Vermes I, van den Berg A (2007) Microchip capillary electrophoresis for point-of-care analysis of lithium. Am Assoc Clin Chem 53:117–123. doi:10.1373/clinchem.2007.073726 Wakida S, Chiba A, Matsuda T, Fukushi K, Nakanishi H, Wu X, Nagai H, Kurosawa S, Takeda S (2001) High-throughput characterization for organic pollutants in environmental waters using a capillary electrophoresis chip. Electrophoresis 22:3505–3508. doi:10.1002/1522-2683(200109)22:16<3505:AID-ELPS3505>3.0.CO;2-M Wallenborg SR, Bailey CG (2000) Separation and detection of explosives on a microchip using micellar electrokinetic chromatography and indirect laser-induced fluorescence. Anal Chem 72:1872–1878. doi:10.1021/ac991382y Wang J, Chatrathi MP, Mulchandani A, Chen W (2001) Electrochemical enzyme immunoassays on microchip platforms. Anal Chem 73:1804–1808. doi:10.1021/ac010808h Wang J, Pumera M, Chatrathi MP, Escarpa A, Musamch M, Collins G, Mulchandai Lin Y, Olsen K (2002a) Single-channel microchip for fast screening and detailed identification of nitroaromatic explosives or organophosphate nerve agents. Anal Chem 74:1187–1191. doi:10.1021/ac0111356 Wang J, Pumera M, Collins GE, Mulchandani A (2002b) Measurements of chemical warfare agent degradation products using an electrophoresis microchip with contactless conductivity detector. Anal Chem 74:6121–6125. doi:10.1021/ac025746p Wang J, Pumera M, Collins G, Opekar F, Jelínek I (2002c) A chip-based capillary electrophoresis-contactless conductivity microsystem for fast measurements of low-explosive ionic components. Analyst 127:719–723. doi:10.1039/B201700H Wang J, Escarpa A, Pumera M, Feldman J (2002d) Capillary electrophoresis–electrochemistry microfluidic system for the determination of organic peroxides. J Chromatogr A 952:249–254. doi:10.1016/S0021-9673(02)00075-4 Wang J, Chen G, Muck A (2003) Movable contactless-conductivity detector for microchip capillary electrophoresis. J Anal Chem 75:4475–4479. doi:10.1021/ac030122k Wang J, Chen G, Muck A, Jr Collins G E (2004) Fabrication and integration of planar electrodes for contactless conductivity detection on polyester-toner electrophoresis microchips. Electrophoresis 24:3728–3734. doi:10.1002/elps.200700761 Wang J, Siangproh W, Thongngamdee S, Chailapakul O (2005) Continuous monitoring with microfabricated capillary electrophoresis chip devices. Analyst 130:1390–1394. doi:10.1039/B508406G Weiss VU, Kolivoska V, Kremser L, Gas B, Blaas D, Kenndler EB (2007) Virus analysis by electrophoresis on a microfluidic chip. J Chromatogr A 860:173–179. doi:10.1016/j.jchromb.2007.10.026 Wu Z, Jensen H, Gamby J, Bai X, Girault HH (2004) A flexible sample introduction method for polymer microfluidic chips using a push/pull pressure pump. Lab Chip 4:512–515. doi:10.1039/B308405A Xu F, Baba Y (2004) Polymer solutions and entropic-based systems for double-stranded DNA capillary electrophoresis and microchip electrophoresis. Electrophoresis 25:2332–2345. doi:10.1002/elps.200405923 Yamamoto S, Oshiro F, Suzuki S (2008) Microchip electrophoresis and online sample preconcentration. Butsuri Seibutsu Kagaku 52:127–131. doi:10.1021/ac0623890 Yan DY, Wang E (2007) Capillary electrophoresis and microchip capillary electrophoresis with electrochemical and electrochemiluminescence detection. J Sep Sci 30:875–890. doi:10.1002/jssc.200600472 Yola ML, Eren T, Atar N (2014a) Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosen Bioelectron 60:277–285. doi:10.1016/j.bios.2014.04.045 Yola ML, Eren T, Atar N (2014b) A novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: application to the simultaneous determination of quercetin and rutin. Electrochem Acta 119:24–31. doi:10.1016/j.electacta.2013.12.028 Yola ML, Eren T, Atar N (2014c) A novel and sensitive electrochemical DNA biosensor based on Fe@ Au nanoparticles decorated graphene oxide. Electrochim Acta 125:38–47. doi:10.1016/j.electacta.2014.01.074 Yuan M, Zhu Y, Lou X, Chen C, Wei G, Lan M, Zhao J (2012) Study of inhibitory effect of mercury(II) ion on exonuclease III via gel electrophoresis and microfluidic electrophoresis. Anal Method 4:2846–2851. doi:10.1039/C2AY25214G Zalewski DR, Kohlheyer D, Schlautmann S, Gardeniers H (2008) Synchronized Continuous-Flow Zone Electrophoresis. Anal Chem 80:6228–6234. doi:10.1021/ac800567n Zamfir AD (2007) Recent advances in sheathless interfacing of capillary electrophoresis and electrospray ionization mass spectrometry. J Chromatogr A 1159:2–13. doi:10.1016/j.chroma.2007.03.115 Zhai H, Li J, Chen Z, Su Z, Liu Z, Yu X (2014) A glass/PDMS electrophoresis microchip embedded with molecular imprinting SPE monolith for contactless conductivity detection. Microchem J 114:223–228. doi:10.1016/j.microc.2014.01.006 Zhang L, Yin XF (2006) Field amplified sample stacking coupled with chip-based capillary electrophoresis using negative pressure sample injection technique. J Chromatogr A 1137:243–248. doi:10.1016/j.chroma.2006.10.007 Zhang L, Yin XF, Fang ZL (2006) Negative pressure pinched sample injection for microchip-based electrophoresis. Lab Chip 6:258–264. doi:10.1039/B511924C Zhao L, Bao J, Li Y (2013) Recent advances in microchip electrophoresis Appl. Chem Ind 42:2263–2266. doi:10.1002/elps.200800615 Zhou X, Liu D, Zhong R, Dai Z, Wu D, Wang H, Du Y, Xia Z, Zhang L, Mei X, Lin B (2004) Determination of SARS-coronavirus by a microfluidic chip system. Electrophoresis 25:3032–3039. doi:10.1002/elps.200305966 Zhuang Z, Starkey JA, Mechref Y, Novotny MV, Jacobson SC (2007) Analytical glycobiology at high sensitivity: current approaches and directions. Anal Chem 79:7170–7175. doi:10.1007/s10719-012-9444-8