Preparation, sintering, and microstructures of strontium barium bismuth tantalate layered perovskite ceramics

Journal of Materials Science - Tập 39 - Trang 3079-3083 - 2004
Chung-Hsin Lu1, Jia-Hau Bai1, Hung Chen1
1Electronic and Electro-Optical Ceramics Laboratory, Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China

Tóm tắt

The solid solutions of Ba-doped SrBi2Ta2O9 layered perovskite ceramic powders have been successfully prepared via a two-step process using BiTaO4 as a precursor. The lattice constants of the solid solutions monotonically increase with increasing barium-ion content. The sinterability of (Sr1−xBax)Bi2Ta2O9 powders is significantly improved by increasing the barium-ion content. When the specimens with high barium-ion contents are sintered at 1100°C, they thermally decompose to form rod-like grains and the matrix expands, leading to a lower density. The addition of barium ions to SrBi2Ta2O9 also results in significant variation in the morphology of the sintered specimens and the occurrence of c-axis preferred orientation which is ascribed to the anisotropic growth of plate-like grains. The precise control of the barium-ion content as well as the sintering conditions is critical for obtaining densified barium-ion doped SrBi2Ta2O9 ceramics with a pure, layered perovskite structure.

Tài liệu tham khảo

B. Aurivillius, Arkiv for Kemi 1 (1949) 463. Idem., ibid. 2 (1950) 519. E. C. Subbarao, J. Amer. Ceram. Soc. 45 (1962) 166. K. Amanuma, T. Hase and Y. Miyasaka, Appl. Phys. Lett. 66 (1995) 221. C. A. Paz Araujo, J. D. Cuchiaro, M. C. Scott and L. D. Mcmillan, Nature 374 (1995) 627. P. C. Joshi, S. O. Ryu, X. Zhang and S. B. Desu, Appl. Phys. Lett. 70 (1997) 1080. C. H. Lu and J. T. Lee, Ceram. Inter. 24 (1998) 285. C. H. Lu and Y. C. Chen, J. Eur. Ceram. Soc. 19 (1999) 2909. C. H. Lu and C. Y. Wen, J. Appl. Phys. 86 (1999) 6335. C. H. Lu and Y. C. Chen, Integr. Ferro. 31 (2000) 129. M. A. Zurbuchen, G. Asayama and D. G. Schlom, Phys. Rev. Lett. 88 (2002) 10760. C. H. Lu and C. H. Wu, J. Eur. Ceram. Soc. 22 (2002) 707. S. S. Park, C. H. Yang, S. G. Yong, J. H. Ahn and H. G. Kim, J. Electronchem. Soc. 144 (1997) 2855. Y. Zhu, S. B. Desu, T. Li and S. Ramanathan, J. Mater. Res. 12 (1997) 783. Y. C. Chen and C. H. Lu, Integr. Ferro. 31 (2000) 87. C. H. Lu and B. K. Fang, J. Mater. Res. 12 (1997) 2104. S. B. Desu and D. P. Vijay, Mater. Sci. Eng. B 32 (1995) 83. C. H. Lu and C. Y. Wen, J. Eur. Ceram. Soc. 20 (2000) 739. T. Sato, K. Sugahara, T. Kijima and H. Ishiwara, Integr. Ferroelectr. 39 (2001) 1119. D. Bhattacharya, R. K. Singh and P. H. Holloway, J. Appl. Phys. 70 (1991) 5433. M. Decamps, D. Remiens, L. Chabal, B. Jaber and B. Thierry, Appl. Phys. Lett. 66 (1995) 685. F. K. Lotgering, J. Inorg. Nucl. Chem. 9 (1959) 113. S. H. Lin, S. L. Swaetz, W. A. Schulze and J. V. Biggers, J. Amer. Ceram. Soc. 66 (1983) 881. H. Watanabe, T. Kimura and T. Yamaguchi, ibid. 74 (1991) 139.