Early prediction of tumor response after radiotherapy in combination with cetuximab in nasopharyngeal carcinoma using 99m Tc-duramycin imaging
Tài liệu tham khảo
Lee, 2015, Management of nasopharyngeal carcinoma: current practice and future perspective, J. Clin. Oncol., 33, 3356, 10.1200/JCO.2015.60.9347
Tang, 2016, Global trends in incidence and mortality of nasopharyngeal carcinoma, Cancer Lett., 374, 22, 10.1016/j.canlet.2016.01.040
Wang, 2016, A new prognostic histopathologic classification of nasopharyngeal carcinoma, Chin. J. Cancer, 35, 41, 10.1186/s40880-016-0103-5
Sze, 2015, Chemotherapy for nasopharyngeal carcinoma - current recommendation and controversies, Hematol. Oncol. Clin. North Am., 29, 1107, 10.1016/j.hoc.2015.07.004
Blanchard, 2015, Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC meta-analysis, The Lancet Oncol., 16, 645, 10.1016/S1470-2045(15)70126-9
Sun, 2014, Long-term outcomes of intensity-modulated radiotherapy for 868 patients with nasopharyngeal carcinoma: an analysis of survival and treatment toxicities, Radiother. Oncol., 110, 398, 10.1016/j.radonc.2013.10.020
Venook, 2017, Effect of first-line chemotherapy combined with cetuximab or bevacizumab on overall survival in patients with KRAS wild-type advanced or metastatic colorectal cancer: a randomized clinical trial, JAMA, 317, 2392, 10.1001/jama.2017.7105
Zhang, 2015, p53, MDM2, eIF4E and EGFR expression in nasopharyngeal carcinoma and their correlation with clinicopathological characteristics and prognosis: a retrospective study, Oncol. Lett., 9, 113, 10.3892/ol.2014.2631
Peng, 2018, Anti-EGFR targeted therapy delivered before versus during radiotherapy in locoregionally advanced nasopharyngeal carcinoma: a big-data, intelligence platform-based analysis, BMC Cancer, 18, 323, 10.1186/s12885-018-4268-y
Bonner, 2006, Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck, New Engl. J. Med., 354, 567, 10.1056/NEJMoa053422
Xu, 2015, Weekly cetuximab concurrent with IMRT aggravated radiation-induced oral mucositis in locally advanced nasopharyngeal carcinoma: results of a randomized phase II study, Oral Oncol., 51, 875, 10.1016/j.oraloncology.2015.06.008
You, 2017, Cetuximab or nimotuzumab plus intensity-modulated radiotherapy versus cisplatin plus intensity-modulated radiotherapy for stage II-IVb nasopharyngeal carcinoma, Int. J. Cancer, 141, 1265, 10.1002/ijc.30819
Magrini, 2016, Cetuximab and radiotherapy versus cisplatin and radiotherapy for locally advanced head and neck cancer: a randomized phase II trial, J. Clin. Oncol., 34, 427, 10.1200/JCO.2015.63.1671
Eisenhauer, 2009, New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1), Eur. J. Cancer, 45, 228, 10.1016/j.ejca.2008.10.026
Smith, 2012, Biomarkers and molecular probes for cell death imaging and targeted therapeutics, Bioconjugate Chem., 23, 1989, 10.1021/bc3003309
Zeng, 2015, Molecular imaging of apoptosis: from micro to macro, Theranostics, 5, 559, 10.7150/thno.11548
Loose, 2008, Prognostic value of 99mTc-HYNIC annexin-V imaging in squamous cell carcinoma of the head and neck, Eur. J. Nucl. Med. Mol. Imaging, 35, 47, 10.1007/s00259-007-0577-0
Hardy, 2015, [99mTc]annexin v-128 SPECT monitoring of splenic and disseminated listeriosis in mice: a model of imaging sepsis, Mol. Imaging Biol., 17, 345, 10.1007/s11307-014-0804-6
Demirci, 2017, Preclinical evaluation of (18)F-ML-10 to determine timing of apoptotic response to chemotherapy in solid tumors, Mol. Imaging, 16, 10.1177/1536012116685941
Witney, 2015, A systematic comparison of 18F-C-SNAT to established radiotracer imaging agents for the detection of tumor response to treatment, Clin. Cancer Res., 21, 3896, 10.1158/1078-0432.CCR-14-3176
Dubash, 2018, Clinical translation of [(18)F]ICMT-11 for measuring chemotherapy-induced caspase 3/7 activation in breast and lung cancer, Eur. J. Nucl. Med. Mol. Imaging, 45, 2285, 10.1007/s00259-018-4098-9
Hoebers, 2008, 99mTc Hynic-rh-Annexin V scintigraphy for in vivo imaging of apoptosis in patients with head and neck cancer treated with chemoradiotherapy, Eur. J. Nucl. Med. Mol. Imaging, 35, 509, 10.1007/s00259-007-0624-x
Belhocine, 2015, (99m)Tc-Annexin A5 quantification of apoptotic tumor response: a systematic review and meta-analysis of clinical imaging trials, Eur. J. Nucl. Med. Mol. Imaging, 42, 2083, 10.1007/s00259-015-3152-0
Zhao, 2011, Lantibiotics as probes for phosphatidylethanolamine, Amino acids, 41, 1071, 10.1007/s00726-009-0386-9
Zhao, 2012, A single-step kit formulation for the (99m)Tc-labeling of HYNIC-Duramycin, Nucl. Med. Biol., 39, 1006, 10.1016/j.nucmedbio.2012.03.006
Zhang, 2013, Imaging of rat cerebral ischemia-reperfusion injury using(99m)Tc-labeled duramycin, Nucl. Med. Biol., 40, 80, 10.1016/j.nucmedbio.2012.09.004
Wang, 2015, The feasibility of imaging myocardial ischemic/reperfusion injury using (99m)Tc-labeled duramycin in a porcine model, Nucl. Med. Biol., 42, 198, 10.1016/j.nucmedbio.2014.09.002
Elvas, 2016, Early prediction of tumor response to treatment: preclinical validation of 99mTc-duramycin, J. Nucl. Med., 57, 805, 10.2967/jnumed.115.168344
Li, 2018, [(99m)Tc]Tc-duramycin, a potential molecular probe for early prediction of tumor response after chemotherapy, Nucl. Med. Biol., 66, 18, 10.1016/j.nucmedbio.2018.07.003
Johnson, 2013, Whole-body imaging of high-dose ionizing irradiation-induced tissue injuries using 99mTc-duramycin, J. Nucl. Med., 54, 1397, 10.2967/jnumed.112.112490
Audi, 2015, In vivo detection of hyperoxia-induced pulmonary endothelial cell death using (99m)Tc-duramycin, Nucl. Med. Biol., 42, 46, 10.1016/j.nucmedbio.2014.08.010
Johnson, 2019, Whole-body imaging of cell death provides a systemic, minimally invasive, dynamic, and near-real time indicator for chemotherapeutic drug toxicity, Clin. Cancer Res., 25, 1331, 10.1158/1078-0432.CCR-18-1846
Elvas, 2015, Characterization of [(99m)Tc]duramycin as a SPECT imaging agent for early assessment of tumor apoptosis, Mol. Imaging Biol., 17, 838, 10.1007/s11307-015-0852-6
Liang, 2018, Cetuximab or nimotuzumab versus cisplatin concurrent with radiotherapy for local-regionally advanced nasopharyngeal carcinoma: a meta-analysis, Asian Pac. J. Cancer Prevent., 19, 1397
Vance, 2013, Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells, Biochim. Biophys. Acta, 1831, 543, 10.1016/j.bbalip.2012.08.016
Palmieri, 2018, [(99m)Tc]duramycin for cell death imaging: impact of kit formulation, purification and species difference, Nucl. Med. Biol., 56, 1, 10.1016/j.nucmedbio.2017.08.005
Audi, 2012, Understanding the in vivo uptake kinetics of a phosphatidylethanolamine-binding agent (99m)Tc-Duramycin, Nucl. Med. Biol., 39, 821, 10.1016/j.nucmedbio.2012.02.004
Patel, 2017, Ethanolamine and phosphatidylethanolamine: partners in health and disease, Oxid. Med. Cell. Longevity, 2017, 10.1155/2017/4829180
Yates, 2012, Duramycin exhibits antiproliferative properties and induces apoptosis in tumour cells, Blood Coagulation Fibrinolysis, 23, 396, 10.1097/MBC.0b013e3283538875
Rello-Varona, 2015, “(Not) all (dead) things share the same breath”: identification of cell death mechanisms in anticancer therapy, Cancer Res., 75, 913, 10.1158/0008-5472.CAN-14-3494
Vanden Berghe, 2013, Determination of apoptotic and necrotic cell death in vitro and in vivo, Methods (San Diego, Calif.), 61, 117, 10.1016/j.ymeth.2013.02.011
Hollville, 2016, Measuring apoptosis by microscopy and flow cytometry, Curr. Protoc. Immunol., 112, 14.38.1, 10.1002/0471142735.im1438s112