Multifunctional surface structures of plants: An inspiration for biomimetics

Progress in Materials Science - Tập 54 - Trang 137-178 - 2009
Kerstin Koch1,2, Bharat Bhushan2, Wilhelm Barthlott1
1NEES Institute for Biodiversity of Plants, Rheinische Friedrich-Wilhelms University of Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany
2Nanoprobe Laboratory for Bio and Nanotechnology and Biomimetics, The Ohio State University, 201 West 19th Avenue, Columbus, OH 43210-1142, USA

Tài liệu tham khảo

Abbott, 2007, Mass production of bio-inspired structured surfaces, Proc Inst Mech Eng, Part C: J Mech Eng Sci, 221, 1181, 10.1243/09544062JMES540 Adamson, 1990 Ayre, 2003 Bar-Cohen, 2006 Bargel, 2005, Tomato (Lycopersicon esculentum Mill.) fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle, J Exp Bot, 56, 1049, 10.1093/jxb/eri098 Bargel, 2006, Structure–function relationships of the plant cuticle and cuticular waxes – a smart material?, Funct Pl Biol Ev Rev, 3, 893, 10.1071/FP06139 Barnes, 1996, Interactions between electromagnetic radiation and the plant cuticle, 157 Barthlott, 1984, Microstructural features of seed surfaces, 95 Barthlott, 1990, Scanning electron microscopy of the epidermal surface in plants, 69 Barthlott, W., 1998. Self-cleaning surfaces of objects and process for producing same. Germany: Patent, EP 0772514 B1, 8 Barthlott, W., Ehler, N., 1977. Rasterelektronenmikroskopie der Epidermis-Oberflächen von Spermatophyten. Trop. u. subtrop. Pflanzenwelt, Akad. der Wiss. und Lit. Mainz. Barthlott, 2000, Seed-diversity in Cactaceae subfam. Cactoideae, vol. 5 Barthlott, 1997, The purity of sacred lotus or escape from contamination in biological surfaces, Planta, 202, 1, 10.1007/s004250050096 Barthlott, 1981, Zur Feinstruktur der Blattoberflächen und systematischen Stellung der Laubmoosgattung Rhacocarpus und anderer Hedwigiaceae, Willdenowia, 11, 3 Barthlott, 1981, Zur Feinstruktur, Chemie und taxonomischen Signifikanz epicuticularer Wachse und ähnlicher Sekrete, Trop Subtrop Pflanzenwelt, 32, 7 Barthlott, 1994, Mimicry and ultrastructural analogy between the semi-aquatic grasshopper Paulinia acuminata (Orthoptera: Pauliniidae) and its foodplant, the water-fern Salvinia auriculata (Filicatae: Salviniaceae), Amazoniana, 13, 47 Barthlott, 1998, Classification and terminology of plant epicuticular waxes, Bot J Linn Soc, 126, 237, 10.1111/j.1095-8339.1998.tb02529.x Barthlott, 2003, Epicuticular waxes and vascular plant systematics: integrating micromorphological and chemical data, 189 Barthlott, 2007 Baumann M, Sakoske G, Poth L, Tünker G. Learning from the lotus flower – self-cleaning coatings on glass. In: Days GP, editor. Proceedings of the 8th international glass conference, Tampere. p. 330–3. Bechert, 2000, Fluid mechanics of biological surfaces and their technological application, Naturwissenschaften, 87, 157, 10.1007/s001140050696 Behnke, 1984, Plant trichomes-structure and ultrastructure: general terminology, taxonomic applications, and aspects of Trichome bacterial interaction in leaf tips of Dioscorea, 1 Benyus, 2002 Bhushan, 2002 Bhushan, 2007 Bhushan, 2008 Bhushan, 2006, Micro- and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces, Nanotechnology, 17, 2758, 10.1088/0957-4484/17/11/008 Bhushan, 2007, Wetting study of patterned surfaces for superhydrophobicity, Ultramicroscopy, 107, 1033, 10.1016/j.ultramic.2007.05.002 Bhushan, 2008, Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces, J Phys: Condens Matter, 20, 225010, 10.1088/0953-8984/20/22/225010 Bhushan, 2008, Nanostructures for superhydrophobicity and low adhesion, Soft Matter, 4, 1799, 10.1039/b808146h Bohn, 2004, Insect aquaplaning: nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface, PNAS, 39, 14138, 10.1073/pnas.0405885101 Born, 2000, Fassadenfarbe mit Lotus-Effekt: Erfolgreiche Übertragung bestätigt, Phänomen Farbe, 2, 34 Boyde A. Review of basis preparation techniques for biological scanning electron microscopy. In: Bredero P, de Priester W, editors. Electr Microsc, vol. I, Electr Micr Found, Leiden; 1980. p. 768–7. Brewer, 1991, Functional interaction between leaf trichomes, leaf wettability and the optical properties of water droplets, Plant Cell Environ, 14, 955, 10.1111/j.1365-3040.1991.tb00965.x Burghardt, 2006, Cuticular transpiration, vol. 23, 292 Burton, 2006, Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces, Ultramicroscopy, 106, 709, 10.1016/j.ultramic.2005.10.007 Cassie, 1944, Trans Faraday Soc, 40, 546, 10.1039/tf9444000546 Cave, 2003, Understanding the plant response to drought-from genes to the whole plant, Funct Plant Biol, 30, 239, 10.1071/FP02076 Cerman Z. Superhydrophobie und Selbstreinigung: Wirkungsweise, Effizienz und Grenzen bei der Abwehr von Mikroorganismen. Diss. Rheinische Friedrich-Wilhelms Universität Bonn; 2007. Cerman Z, Striffler BF, Barthlott W, Stegmeier T, Scherrieble A, von Arnim V. Superhydrophobe Oberflächen für Unterwasseranwendungen. Patent, DE 10 2006 009, 761; 2006. p. 1–3. Cerman Z, Striffler BF, Barthlott W. Dry in the water: the superhydrophobic water fern Salvinia – a model for biomimetic surfaces. In: Gorb SN, editor. Functional surfaces in biology. Berlin, Heidelberg: Springer [in press]. Chow, 2003, Size-dependent adhesion of nanoparticles on rough substrates, J Phys: Condens Matter, 15, 83, 10.1088/0953-8984/15/2/111 Chow, 2007, Nanoscale surface roughness and particle adhesion on structures substrates, Nanotechnology, 18, 1, 10.1088/0957-4484/18/11/115713 1982 Dendl P, Interwies J. Method for imparting a self-cleaning feature to a surface, and an object provided with a surface of this type. Patent Germany: WO 2001/079141; 2001. Dresselhaus, 2000 Ditsch, 1997, Mikromorphologie der Epicuticularwachse und das System der Dilleniidae und Rosidae, Trop Subtrop Pflanzenwelt, 97, 1 Edelmann, 2005, Influence of hydration and temperature on the rheological properties of plant cuticles and their impact on plant organ integrity, J Plant Growth Reg, 24, 116, 10.1007/s00344-004-0015-5 Ehleringer, 1978, Pubescence and leaf spectral characteristics in a desert Shrub, Encelia farinose, Oecologia, 36, 151, 10.1007/BF00349805 Eller, 1977, Die Bedeutung der Wachsausblühungen auf Blättern von Kalanchoe pumila Baker für die Absorption der Globalstrahlung, Flora, 166, 461, 10.1016/S0367-2530(17)32166-7 Eller, 1985, Epidermis und spektrale Eigenschaften pflanzlicher Oberflächen, Ber Deut Bot Ges, 98, 465, 10.1111/j.1438-8677.1985.tb02936.x Ensikat, 1993, Liquid substitution: a versatile procedure for SEM specimen preparation of biological materials without drying or coating, J Microsc, 172, 195, 10.1111/j.1365-2818.1993.tb03413.x Ensikat, 2006, Crystallinity of plant epicuticular waxes: electron and X-ray diffraction studies, Chem Phys Lipids, 144, 45, 10.1016/j.chemphyslip.2006.06.016 Extrand, 2002, Model for contact angle and hysteresis on rough and ultraphobic surfaces, Langmuir, 18, 7991, 10.1021/la025769z Extrand, 2005, Modeling of ultralyophobicity: suspension of liquid drops by a single asperity, Langmuir, 21, 10370, 10.1021/la0513050 Fahn, 2000, Structure and function of secretory cells, Adv Bot Res, 31, 37, 10.1016/S0065-2296(00)31006-0 Fahn, 1992, vol. 13 Fauteux, 2005, Silicon and plant disease resistance against pathogenic fungi, FEMS Microbiol Lett, 249, 1, 10.1016/j.femsle.2005.06.034 Federle, 1997, Slippery ant-plants and skilful climbers: selection and protection of specific ant partners by epicuticular wax blooms in Macaranga (Euphorbiaceae), Oecologia, 112, 217, 10.1007/s004420050303 Feng, 2008, Petal effect: a superhydrophobic state with high adhesive force, Langmuir, 24, 4114, 10.1021/la703821h Forbes, 2005 Franceschi, 2005, Calcium oxalate in plants: formation and function, Ann Rev Plant Biol, 56, 41, 10.1146/annurev.arplant.56.032604.144106 Fröhlich, 1988, Mikromorphologie der epicuticularen Wachse und das System der Monokotylen, Trop Subtrop Pflanzenwelt, 63, 279 Fürstner, 2005, Wetting and self-cleaning properties of artificial superhydrophobic surfaces, Langmuir, 21, 956, 10.1021/la0401011 Fukuda, 2000, Frictional drag reduction with air lubricant over a super-water-repellent surface, J Marine Sci Tech, 5, 123, 10.1007/s007730070009 Gao, 2006, Artificial Lotus Leaf prepared using a 1945 patent and a commercial textile, Langmuir, 22, 5998, 10.1021/la061237x Gates, 1968, Transpiration and leaf temperature, Ann Rev Plant Phys, 19, 211, 10.1146/annurev.pp.19.060168.001235 Gates, 1976, Energy exchange and transpiration, vol. 19, 137, 10.1007/978-3-642-66429-8_8 Genzer, 2006, Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review, Biofouling, 22, 339, 10.1080/08927010600980223 Gibson, 1996 Gorb, 2001 Gorb, 2005, Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on the insect attachment, J Exp Biol, 208, 4651, 10.1242/jeb.01939 Grant, 2003, Ultraviolet leaf reflectance of common urban trees and the prediction of reflectance from leaf surface characteristics, Agric Meteorol, 120, 127, 10.1016/j.agrformet.2003.08.025 Hall, 1974, Wettability of leaves of a selection of New Zealand plants, New Zealand, J Bot, 12, 283 Han, 2005, Langmuir, 21, 6662, 10.1021/la051042+ Helsop-Harrison, 1981, The digestive glands of pinguicula: structure and cytochemistry, Ann Bot, 47, 293, 10.1093/oxfordjournals.aob.a086022 Hennig, 1994, Mikromorphologie der Epicuticularwachse und die Systematik der Magnoliidae, Ranunculidae und Hamamelididae, Trop Subtrop Pflanzenwelt, 90, 5 Hoch, 1987, Signaling for growth orientation and cell differentiation by surface topography in Uromyces, Science, 239, 1659, 10.1126/science.235.4796.1659 Holmes, 2002, Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species, Plant Cell Environ, 25, 85, 10.1046/j.1365-3040.2002.00779.x Höcker, 2002, Plasma treatment of textile fibres, Pure Appl Chem, 74, 423, 10.1351/pac200274030423 Holloway, 1969, The effects of superficial wax on leaf wettability, Ann Appl Biol, 63, 145, 10.1111/j.1744-7348.1969.tb05475.x Holloway, 1970, Surface factors affecting the wetting of leaves, Pest Sci, 1, 156, 10.1002/ps.2780010411 Holloway, 1971, The chemical and physical characteristics of leaf surfaces, 39 Holloway, 1994, Section I – reviews. Plant cuticles: physiochemical characteristics and biosynthesis Israelachvili, 1992 Jeffree, 2006, The fine structure of the plant cuticle, 11 Jeffree, 1971, Epicuticular wax in the stomatal antchamber of Sitka spruce and its effects on the diffusion of water vapor and carbon dioxide, Planta, 98, 1, 10.1007/BF00387018 Jeffree, 1975, Ultrastructure and recrystallization of plant epicuticular waxes, New Physiol, 75, 539, 10.1111/j.1469-8137.1975.tb01417.x Jetter, 1994, Epicuticular crystals of nonacosan-10-ol: in vitro reconstitution and factors influencing crystal habits, Planta, 195, 257, 10.1007/BF00199686 Jetter, 1995, In vitro reconstitution of epicuticular wax crystals: Formation of tubular aggregates by long chain secondary alkendiols, Bot Acta, 108, 111, 10.1111/j.1438-8677.1995.tb00840.x Jetter, 2001, Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development, Plant Phys, 126, 1725, 10.1104/pp.126.4.1725 Jetter, 2006, Composition of plant cuticular waxes, vol. 23, 145 Jones, 1967, Silica in soils, plants, and animals, Adv Agron, 19, 107, 10.1016/S0065-2113(08)60734-8 Jones, 2001 Juniper, 1976, Some features of secretory systems in plants, Histochemical, 9, 659, 10.1007/BF01002907 Juniper BE, Jeffree CE. Plant surfaces. – Edward Arnold. London. Jung, 2006, Contact angle, adhesion and friction properties of micro- and nanopatterned polymers for superhydrophobicity, Nanotechnology, 17, 4970, 10.1088/0957-4484/17/19/033 Jung, 2008, Wetting behavior during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces, J Microsc, 229, 127, 10.1111/j.1365-2818.2007.01875.x Kerstiens, 1996 Kerstiens, 1996, Cuticular water permeability and its physiological significance, J Exp Bot, 47, 1813, 10.1093/jxb/47.12.1813 Kevan, 1985, Flower petal microtexture is a tactile cue for bees Proc, Natl Acad Sci USA, 82, 4750, 10.1073/pnas.82.14.4750 Knoll, 2000, Plant microbe interactions: wetting of ivy (Hedera helix L.) leaf surfaces in relation to colonization by epiphytic microorganisms, Microb Ecol, 41, 33, 10.1007/s002480000012 Koch, 2006, Plant epicuticular waxes: chemistry, form, function and self-assembly, Nat Prod Commun, 1, 1067 Koch, 2008, The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly, Rev Micron, 39, 759, 10.1016/j.micron.2007.11.010 Koch, 2004, Self assembly of epicuticular waxes on plant surfaces investigated by Atomic Force Microscopy (AFM), J Exp Bot, 55, 711, 10.1093/jxb/erh077 Koch, 2006, Structural analysis of wheat wax (Triticum aestivum): from the molecular level to three-dimensional crystals, Planta, 223, 258, 10.1007/s00425-005-0081-3 Koch, 2006, Chemistry and crystal growth of plant wax tubules of Lotus (Nelumbo nucifera) and Nasturtium (Tropaeolum majus) leaves on technical substrates, Cryst Growth Des, 6, 2571, 10.1021/cg060035w Koch, 2007, The use of plant waxes as templates for micro-and nanopatterning of surfaces, Acta Biomat, 3, 905, 10.1016/j.actbio.2007.05.013 Kolattukudy, 2001, Polyesters in higher plants, 4, 10.1007/3-540-40021-4_1 Kösters A. Cuticulare Oberflächen submerser Pflanzen, Diploma thesis (unpublished), Ness Institute for Biodiversity of Plants, Rheinische Friedrich-Wilhems University of Bonn; 1998. Krauss, 1997, Attenuation of UV radiation by plant cuticles from woody species, Plant Cell Environ, 20, 1079, 10.1111/j.1365-3040.1997.tb00684.x Kunst, 2003, Biosynthesis and secretion of plant cuticular wax, Prog Lipid Res, 42, 51, 10.1016/S0163-7827(02)00045-0 Lee, 2007, Effects of intrinsic hydrophobicity on wettability of polymer replicas of a superhydrophobic lotus leaf, Micromech Microeng, 17, 687, 10.1088/0960-1317/17/4/003 Lee, 2006, Fabrication of hydrophobic films replicated from plant leaves in nature, Surf Coat Techn, 201, 553, 10.1016/j.surfcoat.2005.12.006 Li, 2008, Hierarchical structures for natural superhydrophobic surfaces, Soft Matter, 4, 462, 10.1039/B715731B Madou, 2002 Markstädter, 2000, Chemical composition of the slippery epicuticular wax blooms on Macaranga Thouars. (Euphorbiaceae) ant-plants, Chemoecology, 10, 33, 10.1007/s000490050005 Matsui, 2007, Three-dimensional nanostructure fabrication by ion beam chemical vapor deposition, 179 Maheshwari, 2007, A scourge of mankind: from ancient times into the genomics era, Curr Sci, 93, 1249 Martin, 2007, Functional aspects of cell patterning in aerial epidermis, Curr Opin Plant Biol, 10, 70, 10.1016/j.pbi.2006.11.004 Martin JT, Juniper BE. The cuticles of plants. London: Edward Arnold; 1970. Marmur, 2003, Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be?, Langmuir, 19, 8343, 10.1021/la0344682 Matas, 2004, Biomechanics and anatomy of Lycopersicon esculentum fruit peels and enzyme-treated samples, Am J Bot, 91, 352, 10.3732/ajb.91.3.352 Ming, 2005, Superhydrophobic films from raspberrylike particles, Nano Lett, 5, 2298, 10.1021/nl0517363 Mijatovic, 2005, Technologies for nanofluidic systems: top-down vs. bottom-up – a review, Lab Chip, 5, 492, 10.1039/b416951d 1999 Mott, 1982, The adaptive significance of amphistomatic leaves, Plant Cell Environ, 5, 455, 10.1111/1365-3040.ep11611750 Müller, 2005, Plant surface properties in chemical ecology, Chem Ecol, 3, 2621, 10.1007/s10886-005-7617-7 Müller, 2004, Clean surfaces with the lotus-effect, Jornadas comite espanol de la detergencia, 34, 103 Nedelec, 2007, Sol–gel processing of nanostructured inorganic scintillating materials, J Nanomat, 3, 1, 10.1155/2007/36392 Neinhuis, 1997, Characterization and distribution of water-repellent, self-cleaning plant surfaces, Ann Bot, 79, 667, 10.1006/anbo.1997.0400 Nobel, 1991 Nosonovsky, 2007, Hierarchical roughness makes superhydrophobic states stable, Microelectron Eng, 84, 382, 10.1016/j.mee.2006.10.054 Nosonovsky, 2007, Hierarchical roughness optimization for biomimetic superhydrophobic surfaces, Ultramicroscopy, 107, 969, 10.1016/j.ultramic.2007.04.011 Nosonovsky, 2007, Multiscale friction mechanisms and hierarchical surfaces in nano and bio-tribology, Mater Sci Eng R, R58, 162, 10.1016/j.mser.2007.09.001 Nosonovsky, 2008, Roughness induced superhydrophobicity: a way to design non adhesive surfaces, J Phys C: Condens Matter, 20, 225009, 10.1088/0953-8984/20/22/225009 Nosonovsky, 2008 Nosonovsky M, Bhushan B. Superhydrophobicity for energy conversion and conservation applications. J Adhes Sci Technol, in press. Nosonovsky, 2008, Biologically inspired surfaces: broadening the scope of roughness, Adv Funct Mater, 18, 843, 10.1002/adfm.200701195 Nun, 2002, Lotus-Effect®-surfaces, Macromol Symp, 187, 677, 10.1002/1521-3900(200209)187:1<677::AID-MASY677>3.0.CO;2-I Olsson, 1999, Epidermal transmittance and phenolics composition of atrazine-tolerant and atrazine-sensitive cultivars of Brassica napus grown under enhanced UV-B radiation, Phys Plant, 107, 259, 10.1034/j.1399-3054.1999.100302.x Otten, 2004, How plants keep dry: a physicist’s point of view, Langmuir, 20, 2405, 10.1021/la034961d Petracek, 1995, Rheological properties of enzymatically isolated tomato fruit cuticle, Plant Physiol, 109, 675, 10.1104/pp.109.2.675 Pitois, 2002, Small particle at a fluid interface: Effect of contact angle hysteresis on force and work of detachment, Langmuir, 18, 9751, 10.1021/la020300p Pfündel, 2006, Optical properties of plant surfaces, vol. 3, 216 Pociute, 2003, Wetting behaviour of surgerical polyester woven fabrics, Mater Sci, 9, 410 Ren, 1998, Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science, 282, 1105, 10.1126/science.282.5391.1105 Ren, 2007, Non-smooth morphologies of -pica1 plant leaf surfaces and their anti-adhesion effects, J Bionic Eng, 4, 33, 10.1016/S1672-6529(07)60010-9 Rentschler, 1971, Die Wasserbenetzbarkeit von Blattoberflächen und ihre submikroskopische, Struktur Planta, 96, 119, 10.1007/BF00386362 Reynolds, 1963, Some observations on the seed coat structure within the genus epilobium, J Cell Biol, 17, 208, 10.1083/jcb.17.1.208 Riederer, 1989, The cuticles of conifers: structure, composition and transport properties, 157 Riederer, 2006 Riederer, 1995, Waxes – the transport barriers of plant cuticles, 131 Riederer, 2001, Protecting against water loss: analysis of the barrier properties of plant cuticles, J Exp Bot, 52, 2023, 10.1093/jexbot/52.363.2023 Roach P, Shirtcliffe NJ, Newton MI. Progress in superhydrophobic surface development. Soft Matter; 2008. doi: 10.1039/b712575p. Robinson, 1993, Wax as a mechanism for protection against photoinhibition. A study of Cotyledon orbiculata, Bot Acta, 106, 307, 10.1111/j.1438-8677.1993.tb00753.x Rodriguez, 1984 Sangster, 2001, Silicon deposition in higher plants, 85 Saeedur, 1995 Schill, 1973, Kakteendornen als wasserabsorbierende Organe, Naturwissenschaften, 60, 202, 10.1007/BF00599438 Schreiber, 1996, Ecophysiology of cuticular transpiration: comparative investigation of cuticular water permeability of plant species from different habitats, Oecologia, 107, 426, 10.1007/BF00333931 Schuepp, 1973, Model experiments on free convection heat and mass transfer of leaves and plant elements, Boundary-Layer Meteorol, 3, 454, 10.1007/BF01034988 Sculthorpe CD. The biology of aquatic vascular plants. London: Edward Arnold; 1967. Sinclair, 1970, Optical properties of leaves of some species in arid South Australia, Austral Bot, 18, 261, 10.1071/BT9700261 Singh, 2007, Replication of surfaces of natural leaves for enhanced micro-scale tribological property, Mater Sci Eng, C4, 875, 10.1016/j.msec.2006.10.007 Smith, 1997 Solga, 2007, The dream of staying clean: Lotus and biomimetic surfaces, Bioinspir Biomimet, 2, 1, 10.1088/1748-3182/2/4/S02 Speck, 2004, Plants as concept generators for biomimetic light-weight structures with variable stiffness and self-repair mechanisms, J Bionics Eng, 1, 199, 10.1007/BF03651625 Stosch, 2007, Efficiency of self-cleaning properties in wheat (Triticum aestivum L.)., Appl Bot Food Qual, 81, 49 Tokunaga J, Kumada M, Sugiyama Y, Watanabe N, Chong Y-B, Matsubara N. Method of forming air film on submerged surface of submerged part-carrying structure, and film structure on submerged surface. European Patent EP0616940; 1993. p. 1–14. Von Baeyer, 2000, The Lotus effect, Sci: J NY Acad Sci, 12 Wagner, 2003, Quantitative assessment to the structural basis of water repellency in natural and technical surfaces, J Exp Bot, 54, 1295, 10.1093/jxb/erg127 Wagner, 2004, New approaches for studying and exploiting an old protuberance, the plant trichome, Ann Bot, 93, 3, 10.1093/aob/mch011 Ward, 1952, The lotus symbol: its meaning in Buddhist art and philosophy, J Aesthet Art Crit, 11, 135, 10.2307/426039 Wenzel, 1936, Resistance of solid surfaces to wetting by water, Ind Eng Chem, 28, 988, 10.1021/ie50320a024 Wetzel, 1986, A model of Zostera marina L. photosynthesis and growth: simulate effects of selected physical–chemical variables and biological interactions, Aquat Bot, 26, 307, 10.1016/0304-3770(86)90029-X Wollenweber, 1978, The distribution and chemical constituents of the farinose exudates in gymnogrammoid ferns, Am Fern J, 68, 13, 10.2307/1546411 Zhang, 2008, Superhydrophobic surfaces: from structural control to functional application, J Mater Chem, 18, 621, 10.1039/B711226B