Signal Regulatory Proteins in the Immune System

Journal of Immunology - Tập 175 Số 12 - Trang 7781-7787 - 2005
Ellen M. van Beek1, Fiona C. Cochrane2, A. Neil Barclay2, Timo K. van den Berg1
1*Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands; and
2Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom

Tóm tắt

Abstract Signal regulatory proteins (SIRPs) constitute a family of transmembrane glycoproteins with extracellular Ig-like domains. Several SIRP family members have thus far been identified on myeloid and other cells in man, mouse, rat, and cattle. In the present study, we provide a description of the SIRP multigene family, including a number of previously undescribed SIRP genes, based on the complete genome sequences of various mammalian and bird species. We discuss this information in the context of the known immunological properties of the individual SIRP family members. Our analysis reveals SIRPs as a diverse multigene family of immune receptors, which includes inhibitory SIRPα, activating SIRPβ, nonsignaling SIRPγ, and soluble SIRPδ members. For each species, there appears to be a single inhibitory SIRPα member that, upon interaction with the “self” ligand CD47, controls “homeostatic” innate immune effector functions, such as host cell phagocytosis. The activating SIRPβ proteins show considerable variability in structure and number across species and do not bind CD47. Thus the SIRP family is a rapidly evolving gene family with important roles in immune regulation.

Từ khóa


Tài liệu tham khảo

Borges, L., D. Cosman. 2000. LIRs/ILTs/MIRs, inhibitory and stimulatory Ig-superfamily receptors expressed in myeloid and lymphoid cells. Cytokine Growth Factor Rev. 11: 209-217.

Kanazawa, N., K. Tashiro, Y. Miyachi. 2004. Signaling and immune regulatory role of the dendritic cell immunoreceptor (DCIR) family lectins: DCIR, DCAR, dectin-2 and BDCA-2. Immunobiology 209: 179-190.

Lanier, L. L.. 2005. NK cell recognition. Annu. Rev. Immunol. 23: 225-274.

Wright, G. J., H. Cherwinski, M. Foster-Cuevas, G. Brooke, M. J. Puklavec, M. Bigler, Y. Song, M. Jenmalm, D. Gorman, T. McClanahan, et al 2003. Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J. Immunol. 171: 3034-3046.

Barclay, A. N.. 2003. Membrane proteins with immunoglobulin-like domains: a master superfamily of interaction molecules. Semin. Immunol. 15: 215-223.

van den Berg, T. K., J. A. Yoder, G. W. Litman. 2004. On the origins of adaptive immunity: innate immune receptors join the tale. Trends Immunol. 25: 11-16.

Agrawal, A., Q. M. Eastman, D. G. Schatz. 1998. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394: 744-751.

Fujioka, Y., T. Matozaki, T. Noguchi, A. Iwamatsu, T. Yamao, N. Takahashi, M. Tsuda, T. Takada, M. Kasuga. 1996. A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion. Mol. Cell Biol. 16: 6887-6899.

Lanier, L. L., A. B. Bakker. 2000. The ITAM-bearing transmembrane adaptor DAP12 in lymphoid and myeloid cell function. Immunol. Today 21: 611-614.

Brooke, G. P., K. R. Parsons, C. J. Howard. 1998. Cloning of two members of the SIRP α family of protein tyrosine phosphatase binding proteins in cattle that are expressed on monocytes and a subpopulation of dendritic cells and which mediate binding to CD4 T cells. Eur. J. Immunol. 28: 1-11.

Kharitonenkov, A., Z. Chen, I. Sures, H. Wang, J. Schilling, A. Ullrich. 1997. A family of proteins that inhibit signalling through tyrosine kinase receptors. Nature 386: 181-186.

Veillette, A., E. Thibaudeau, S. Latour. 1998. High expression of inhibitory receptor SHPS-1 and its association with protein-tyrosine phosphatase SHP-1 in macrophages. J. Biol. Chem. 273: 22719-22728.

Brooke, G., J. D. Holbrook, M. H. Brown, A. N. Barclay. 2004. Human lymphocytes interact directly with CD47 through a novel member of the signal regulatory protein (SIRP) family. J. Immunol. 173: 2562-2570.

Ichigotani, Y., S. Matsuda, K. Machida, K. Oshima, T. Iwamoto, K. Yamaki, T. Hayakawa, M. Hamaguchi. 2000. Molecular cloning of a novel human gene (SIRP-B2) which encodes a new member of the SIRP/SHPS-1 protein family. J. Hum. Genet. 45: 378-382.

Piccio, L., W. Vermi, K. S. Boles, A. Fuchs, C. A. Strader, F. Facchetti, M. Cella, M. Colonna. 2005. Adhesion of human T cells to antigen-presenting cells through SIRPβ2-CD47 interaction costimulates T cell proliferation. Blood 105: 2421-2427.

Hayashi, A., H. Ohnishi, H. Okazawa, S. Nakazawa, H. Ikeda, S. Motegi, N. Aoki, S. Kimura, M. Mikuni, T. Matozaki. 2004. Positive regulation of phagocytosis by SIRPβ and its signaling mechanism in macrophages. J. Biol. Chem. 279: 29450-29460.

Spannagel, R., G. Fricker, R. Zawatzky. 2005. Klonierung und Charakterisierung von signal regulatory protein β in primären Macrophagen der Maus. Doctoral dissertation Ruprecht-Karls-University, Heidelberg, Germany.

Yoder, J. A., R. T. Litman, M. G. Mueller, S. Desai, K. P. Dobrinski, J. S. Montgomery, M. P. Buzzeo, T. Ota, C. T. Amemiya, N. S. Trede, et al 2004. Resolution of the novel immune-type receptor gene cluster in zebrafish. Proc. Natl. Acad. Sci. USA 101: 15706-15711.

Adams, S., L. J. van der Laan, E. Vernon-Wilson, C. Renardel de Lavalette, E. A. Dopp, C. D. Dijkstra, D. L. Simmons, T. K. van den Berg. 1998. Signal-regulatory protein is selectively expressed by myeloid and neuronal cells. J. Immunol. 161: 1853-1859.

van den Nieuwenhof, I. M., C. Renardel de Lavalette, N. Diaz, I. van Die, T. K. van den Berg. 2001. Differential galactosylation of neuronal and haematopoietic signal regulatory protein α determines its cellular binding-specificity. J. Cell Sci. 114: 1321-1329.

Seiffert, M., C. Cant, Z. Chen, I. Rappold, W. Brugger, L. Kanz, E. J. Brown, A. Ullrich, H. J. Buhring. 1999. Human signal-regulatory protein is expressed on normal, but not on subsets of leukemic myeloid cells and mediates cellular adhesion involving its counterreceptor CD47. Blood 94: 3633-3643.

Jiang, P., C. F. Lagenaur, V. Narayanan. 1999. Integrin-associated protein is a ligand for the P84 neural adhesion molecule. J. Biol. Chem. 274: 559-562.

Vernon-Wilson, E. F., W. J. Kee, A. C. Willis, A. N. Barclay, D. L. Simmons, M. H. Brown. 2000. CD47 is a ligand for rat macrophage membrane signal regulatory protein SIRP (OX41) and human SIRPα 1. Eur. J. Immunol. 30: 2130-2137.

Brown, E. J., W. A. Frazier. 2001. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 11: 130-135.

Timms, J. F., K. Carlberg, H. Gu, H. Chen, S. Kamatkar, M. J. Nadler, L. R. Rohrschneider, B. G. Neel. 1998. Identification of major binding proteins and substrates for the SH2-containing protein tyrosine phosphatase SHP-1 in macrophages. Mol. Cell Biol. 18: 3838-3850.

Yamao, T., T. Noguchi, O. Takeuchi, U. Nishiyama, H. Morita, T. Hagiwara, H. Akahori, T. Kato, K. Inagaki, H. Okazawa, et al 2002. Negative regulation of platelet clearance and of the macrophage phagocytic response by the transmembrane glycoprotein SHPS-1. J. Biol. Chem. 277: 39833-39839.

Inagaki, K., T. Yamao, T. Noguchi, T. Matozaki, K. Fukunaga, T. Takada, T. Hosooka, S. Akira, M. Kasuga. 2000. SHPS-1 regulates integrin-mediated cytoskeletal reorganization and cell motility. EMBO J. 19: 6721-6731.

Oldenborg, P. A., A. Zheleznyak, Y. F. Fang, C. F. Lagenaur, H. D. Gresham, F. P. Lindberg. 2000. Role of CD47 as a marker of self on red blood cells. Science 288: 2051-2054.

Ishikawa-Sekigami, T., Y. Kaneko, H. Okazawa, T. Tomizawa, J. Okajo, Y. Saito, C. Okuzawa, M. Sugawara-Yokoo, U. Nishiyama, H. Ohnishi, et al. 2005. SHPS-1 promotes the survival of circulating erythrocytes through inhibition of phagocytosis by splenic macrophages. Blood. In press.

Smith, R. E., V. Patel, S. D. Seatter, M. R. Deehan, M. H. Brown, G. P. Brooke, H. S. Goodridge, C. J. Howard, K. P. Rigley, W. Harnett, M. M. Harnett. 2003. A novel MyD-1 (SIRP-1α) signaling pathway that inhibits LPS-induced TNF-α production by monocytes. Blood 102: 2532-2540.

Alblas, J., H. Honing, C. R. De Lavalette, M. H. Brown, C. D. Dijkstra, T. K. van den Berg. 2005. Signal regulatory protein α ligation induces macrophage nitric oxide production through JAK/. Mol. Cell Biol. 25: 7181-7192.

Stofega, M. R., L. S. Argetsinger, H. Wang, A. Ullrich, C. Carter-Su. 2000. Negative regulation of growth hormone receptor/JAK2 signaling by signal regulatory protein α. J. Biol. Chem. 275: 28222-28229.

Han, X., H. Sterling, Y. Chen, C. Saginario, E. J. Brown, W. A. Frazier, F. P. Lindberg, A. Vignery. 2000. CD47, a ligand for the macrophage fusion receptor, participates in macrophage multinucleation. J. Biol. Chem. 275: 37984-37992.

Saginario, C., H. Sterling, C. Beckers, R. Kobayashi, M. Solimena, E. Ullu, A. Vignery. 1998. MFR, a putative receptor mediating the fusion of macrophages. Mol. Cell Biol. 18: 6213-6223.

Latour, S., H. Tanaka, C. Demeure, V. Mateo, M. Rubio, E. J. Brown, C. Maliszewski, F. P. Lindberg, A. Oldenborg, A. Ullrich, et al 2001. Bidirectional negative regulation of human T and dendritic cells by CD47 and its cognate receptor signal-regulator protein α: down-regulation of IL-12 responsiveness and inhibition of dendritic cell activation. J. Immunol. 167: 2547-2554.

Fukunaga, A., H. Nagai, T. Noguchi, H. Okazawa, T. Matozaki, X. Yu, C. F. Lagenaur, N. Honma, M. Ichihashi, M. Kasuga, et al 2004. Src homology 2 domain-containing protein tyrosine phosphatase substrate 1 regulates the migration of Langerhans cells from the epidermis to draining lymph nodes. J. Immunol. 172: 4091-4099.

Cooper, D., F. P. Lindberg, J. R. Gamble, E. J. Brown, M. A. Vadas. 1995. Transendothelial migration of neutrophils involves integrin-associated protein (CD47). Proc. Natl. Acad. Sci. USA 92: 3978-3982.

de Vries, H. E., J. J. Hendriks, H. Honing, C. R. De Lavalette, S. M. van der Pol, E. Hooijberg, C. D. Dijkstra, T. K. van den Berg. 2002. Signal-regulatory protein α-CD47 interactions are required for the transmigration of monocytes across cerebral endothelium. J. Immunol. 168: 5832-5839.

Liu, Y., H. J. Buhring, K. Zen, S. L. Burst, F. J. Schnell, I. R. Williams, C. A. Parkos. 2002. Signal regulatory protein (SIRPα), a cellular ligand for CD47, regulates neutrophil transmigration. J. Biol. Chem. 277: 10028-10036.

Liu, Y., I. Soto, Q. Tong, A. Chin, H. J. Buhring, T. Wu, K. Zen, C. A. Parkos. 2005. SIRPβ1 is expressed as a disulfide linked homodimer in leukocytes and positively regulates neutrophil transepithelial migration. J. Biol. Chem. 280: 36132-36140.

Dietrich, J., M. Cella, M. Seiffert, H. J. Buhring, M. Colonna. 2000. Cutting edge: signal-regulatory protein β1 is a DAP12-associated activating receptor expressed in myeloid cells. J. Immunol. 164: 9-12.

Seiffert, M., P. Brossart, C. Cant, M. Cella, M. Colonna, W. Brugger, L. Kanz, A. Ullrich, H. J. Buhring. 2001. Signal-regulatory protein α (SIRPα) but not SIRPβ is involved in T cell activation, binds to CD47 with high affinity, and is expressed on immature CD34+CD38− hematopoietic cells. Blood 97: 2741-2749.

Tomasello, E., C. Cant, H. J. Buhring, F. Vely, P. Andre, M. Seiffert, A. Ullrich, E. Vivier. 2000. Association of signal-regulatory proteins β with KARAP/DAP-12. Eur. J. Immunol. 30: 2147-2156.

Lanier, L. L., B. C. Corliss, J. Wu, C. Leong, J. H. Phillips. 1998. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 391: 703-707.

Cameron, C. M., J. W. Barrett, M. Mann, A. Lucas, G. McFadden. 2005. Myxoma virus M128L is expressed as a cell surface CD47-like virulence factor that contributes to the down-regulation of macrophage activation in vivo. Virology 337: 55-67.

Arase, H., E. S. Mocarski, A. E. Campbell, A. B. Hill, L. L. Lanier. 2002. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296: 1323-1326.

Smith, H. R., J. W. Heusel, I. K. Mehta, S. Kim, B. G. Dorner, O. V. Naidenko, K. Iizuka, H. Furukawa, D. L. Beckman, J. T. Pingel, et al 2002. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl. Acad. Sci. USA 99: 8826-8831.

Gardai, S. J., K. A. McPhillips, S. C. Frasch, W. J. Janssen, A. Starefeldt, J. E. Murphy-Ullrich, D. L. Bratton, P. A. Oldenborg, M. Michalak, P. M. Henson. 2005. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP in the phagocyte. Cell 123: 321-334.