Methods to account for spatial autocorrelation in the analysis of species distributional data: a review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anon. 2005. R: a language and environment for statistical computing. – R Foundation for Statistical Computing.
Augustin N. H., 2005, Analyzing the spread of beech canker, For. Sci., 51, 438
Besag J., 1974, Spatial interaction and the statistical analysis of lattice systems, J. Roy. Stat. Soc. B, 36, 192
Bivand R. 2005. spdep: spatial dependence: weighting schemes statistics and models. – R package version 0.3–17.
Carey V. J. 2002. gee: generalized estimation equation solver. Ported to R by Thomas Lumley (ver. 3.13 4.4) and Brian Ripley. – <www.r‐project.org>.
Carl G. and Kühn I. 2007b. Analyzing spatial ecological data using linear regression and wavelet analysis. – Stochast. Environ. Res. Risk Assess. in press.
Cliff A. D., 1981, Spatial processes: models and applications
Diggle P. J., 1995, Analysis of longitudinal data
Dobson A. J., 2002, An introduction to generalized linear models
Fotheringham A. S., 2002, Geographically weighted regression: the analysis of spatially varying relationships
Hastie T. J., 1990, Generalized additive models
Isaaks E. H., 1989, An introduction to applied geostatistics
Kaluzny S. P., 1998, S‐plus spatial stats user's manual for Windows and Unix
Kissling W. D. and Carl G. 2007. Spatial autocorrelation and the selection of simultaneous autoregressive models. – Global Ecol. Biogeogr. in press.
Klute D. S., 2002, Predicting species occurrences: issues of accuracy and scale, 335
Legendre P., 1998, Numerical ecology
Littell R. C., 1996, SAS system for mixed lodels
McPherson J. M., 2007, Effects of species’ ecology on the accuracy of distribution models, Ecography, 30, 135
Myers R. H., 2002, Generalized linear models
Osborne P. E. et al. 2007. Non‐stationarity and local approaches to modelling the distributions of wildlife. – Div. Distribut. in press.
Teterukovskiy A., 2003, Effective field sampling for predicting the spatial distribution of reindeer (Rangifer tarandus) with help of the Gibbs sampler, Ambio, 32, 568, 10.1579/0044-7447-32.8.568
Wu H. L., 1997, Modelling the distribution of plant species using the autologistic regression model, Environ. Ecol. Stat., 4, 49, 10.1023/A:1018505924603
Yan J., 2002, geepack: yet another package for generalized estimating equations, R News, 2, 12
Yan J. 2004. geepack: generalized estimating equation package. – R package version 0.2–10.