Thermal management of water based SWCNTs enclosed in a partially heated trapezoidal cavity via FEM

International Journal of Heat and Mass Transfer - Tập 112 - Trang 972-982 - 2017
Rizwan Ul Haq1, S. Naveed Kazmi2, Toufik Mekkaoui3
1Department of Electrical Engineering, Bahria University, Islamabad Campus, Islamabad 44000, Pakistan
2Department of Mathematics, Mirpur University of Science and Technology (MUST), Mirpur, Azad Kashmir, Pakistan
3Department of Mathematics, Faculty of Science and Technology, Errachidia, Morocco

Tài liệu tham khảo

Khanfer, 2003, Bouyancy-driven heat transfer enhancement in two-dimensional enclosure utilizing nanofluid, Int. J. Heat Mass Transfer, 46, 3639, 10.1016/S0017-9310(03)00156-X Santra, 2008, Study of heat transfer characteristics of copper-water nanofluid in a differentially heated square cavity with different viscosity models, J. Enhancement Heat Transfer, 15, 273, 10.1615/JEnhHeatTransf.v15.i4.10 Maxwell-Garnett, 1904, Colours in metal glasses and in metallic films, Philos. Trans. Roy. Soc. A, 203, 385, 10.1098/rsta.1904.0024 Buruggman, 1935, Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, I. Dielektrizitatskontanten and Leitfahigkeiten der Mishkorper aus Isotropen Substanzen, Ann. Physik, Leipzig, 24, 636, 10.1002/andp.19354160705 Jou, 2006, Numerical research of natural convective heat transfer enhancement filled with nanofluid in rectangular enclosure, Int. Commun. Heat Mass Transfer, 33, 727, 10.1016/j.icheatmasstransfer.2006.02.016 Oztop, 2008, Numerical study of natural convection in partially heated rectangular enclosure filled with nanofluid, Int. J. Heat Fluid Flow, 29, 1326, 10.1016/j.ijheatfluidflow.2008.04.009 Abu Nada, 2009, Effects of variable viscosity and thermal conductivity of Al2O3–water nanofluid on heat transfer enhancement in natural in natural convection, Int. J. Heat Fluid Flow, 30, 679, 10.1016/j.ijheatfluidflow.2009.02.003 Ghasemi, 2011, Magnetic field effect on natural convection in a nanofluid filled-square enclosure, Int. J. Therm. Sci., 50, 1748, 10.1016/j.ijthermalsci.2011.04.010 Ogut, 2009, Natural convection of water-based nanofluid in an inclined enclosure with a heat source, Int. J. Therm. Sci., 48, 2063, 10.1016/j.ijthermalsci.2009.03.014 Das, 2009, Natural convection heat transfer augmentation in a partially heated and particularly square cavity utilizing nanofluids, Int. J. Numer. Meth. Heat Fluid Flow, 19, 411, 10.1108/09615530910938353 Kumar, 2008, Analysis of flow and thermal field in nanofluid using a single phase thermal dispersion model, Appl. Math. Model., 34, 573, 10.1016/j.apm.2009.06.026 Basak, 2009, Heat flow analysis for natural convection within trapezoidal enclosures based on heatline concept, Int. J. Heat Mass Transfer, 52, 2471, 10.1016/j.ijheatmasstransfer.2009.01.020 Varol, 2009, Natural convection in right-angle porous trapezoidal enclosure partially cooled from inclined wall, Int. Commun. Heat Mass Transfer, 36, 6, 10.1016/j.icheatmasstransfer.2008.09.010 Varol, 2009, Entropy analysis due to conjugate-buoyant flow in right-angle trapezoidal enclosure filled with a porous medium bounded by a solid vertical wall, Int. J. Therm. Sci., 48, 1161, 10.1016/j.ijthermalsci.2008.08.002 Lin, 2010, Natural convection heat transfer of nanofluid in a vertical cavity: effects of non-uniform particle diameter and temperature on thermal conductivity, Int. J. Heat Fluid Flow, 31, 236, 10.1016/j.ijheatfluidflow.2009.11.003 Saleh, 2011, Natural convection heat transfer in a nanofluid-filled trapezoidal enclosure, Int. J. Heat Mass Transfer, 54, 194, 10.1016/j.ijheatmasstransfer.2010.09.053 Ghasemi, 2015, Study on blood flow containing nanoparticles through porous arteries in presence of magnetic field using analytical methods, Physica E, 70, 146, 10.1016/j.physe.2015.03.002 Ghasemi, 2014, Electrohydrodynamic flow analysis in a circular cylindrical conduit using least square method, J. Electrostat., 72, 47, 10.1016/j.elstat.2013.11.005 Rahimi-Gorji, 2015, Statistical optimization of microchannel heat sink (MCHS) geometry cooled by different nanofluids using RSM analysis, Eur. Phys. J. Plus, 130 Hatami, 2014, Thermal behavior of longitudinal convective–radiative porous fins with different section shapes and ceramic materials (SiC and Si3N4), Ceram. Int., 40, 6765, 10.1016/j.ceramint.2013.11.140 Thang, 2015, A modified model for thermal conductivity of carbon nanotube-nanofluids, Phys. Fluids, 27, 032002, 10.1063/1.4914405 Taylor, 1973, A numerical solution of the Navier-Stokes equations using finite element technique, Comput. Fluids, 1, 73, 10.1016/0045-7930(73)90027-3 Dechaumphai, 1999