A massive magmatic degassing event drove the Late Smithian Thermal Maximum and Smithian–Spathian boundary mass extinction
Tài liệu tham khảo
Algeo, 2007, Sequencing events across the Permian–Triassic boundary, Guryul Ravine (Kashmir, India), Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 328, 10.1016/j.palaeo.2006.11.050
Algeo, 2011, Terrestrial–marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems, Palaeogeogr. Palaeoclimatol. Palaeoecol., 308, 1, 10.1016/j.palaeo.2011.01.011
Algeo, 2013, Plankton and productivity during the Permian–Triassic boundary crisis: an analysis of organic carbon fluxes, Glob. Planet. Chang., 105, 52, 10.1016/j.gloplacha.2012.02.008
Algeo, 2015, Reconstruction of secular variation in seawater sulfate concentrations, Biogeosciences, 12, 2131, 10.5194/bg-12-2131-2015
Baresel, 2017, Precise age for the Permian–Triassic boundary in South China from high-precision U-Pb geochronology and Bayesian age-depth modeling, Solid Earth, 8, 361, 10.5194/se-8-361-2017
Benton, 2014, Impacts of global warming on Permo–Triassic terrestrial ecosystems, Gondwana Res., 25, 1308, 10.1016/j.gr.2012.12.010
Bernasconi, 2017, An evaporite-based high-resolution sulfur isotope record of Late Permian and Triassic seawater sulfate, Geochim. Cosmochim. Acta, 204, 331, 10.1016/j.gca.2017.01.047
Berner, 2002, Examination of hypotheses for the Permo–Triassic boundary extinction by carbon cycle modeling, Proc. Natl. Acad. Sci. U. S. A., 99, 4172, 10.1073/pnas.032095199
Berner, 2005, The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic, Geochim. Cosmochim. Acta, 69, 3211, 10.1016/j.gca.2005.03.021
Berner, 2009, Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model, Am. J. Sci., 309, 603, 10.2475/07.2009.03
Bottrell, 2006, Reconstruction of changes in global sulfur cycling from marine sulfate isotopes, Earth-Sci. Rev., 75, 59, 10.1016/j.earscirev.2005.10.004
Brand, 2004, Carbon, oxygen and strontium isotopes in Paleozoic carbonate components: an evaluation of original seawater-chemistry proxies, Chem. Geol., 204, 23, 10.1016/j.chemgeo.2003.10.013
Brayard, 2017, Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna, Sci. Adv., 3, 10.1126/sciadv.1602159
Burdett, 1989, A Neogene seawater sulfur isotope age curve from calcareous pelagic microfossils, Earth Planet. Sci. Lett., 94, 189, 10.1016/0012-821X(89)90138-6
Burgess, 2015, High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction, Sci. Adv., 1, 10.1126/sciadv.1500470
Burgess, 2014, High-precision timeline for Earth’s most severe extinction, Proc. Natl. Acad. Sci. U. S. A., 111, 3316, 10.1073/pnas.1317692111
Burgess, 2017, Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction, Nat. Commun., 8, 1, 10.1038/s41467-017-00083-9
Campbell, 1992, Synchronism of the Siberian Traps and the Permian–Triassic boundary, Science, 258, 1760, 10.1126/science.258.5089.1760
Caravaca, 2017, Early Triassic fluctuations of the global carbon cycle: New evidence from paired carbon isotopes in the western USA basin, Glob. Planet. Chang., 154, 10, 10.1016/j.gloplacha.2017.05.005
Chen, 2020, Intensified chemical weathering during Early Triassic revealed by magnesium isotopes, Geochim. Cosmochim. Acta, 287, 263, 10.1016/j.gca.2020.02.035
Clarkson, 2013, A new high-resolution δ13C record for the Early Triassic: insights from the Arabian Platform, Gondwana Res., 24, 233, 10.1016/j.gr.2012.10.002
Clarkson, 2016, Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery, Nat. Commun., 7, 12236, 10.1038/ncomms12236
Cui, 2013, Initial assessment of the carbon emission rate and climatic consequences during the end-Permian mass extinction, Palaeogeogr. Palaeoclimatol. Palaeoecol., 389, 128, 10.1016/j.palaeo.2013.09.001
Cui, 2021, Massive and rapid predominantly volcanic CO2 emission during the end-Permian mass extinction, Proc. Natl. Acad. Sci. U. S. A., 118, 10.1073/pnas.2014701118
Dai, 2018, Rapid biotic rebound during the late Griesbachian indicates heterogeneous recovery patterns after the Permian–Triassic mass extinction, Geol. Soc. Am. Bull., 130, 2015, 10.1130/B31969.1
Dai, 2021, Calibrating the late Smithian (Early Triassic) crisis: new insights from the Nanpanjiang Basin, South China, Glob. Planet. Chang., 201, 10.1016/j.gloplacha.2021.103492
Dal Corso, 2020, Permo–Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse, Nat. Commun., 11, 2962, 10.1038/s41467-020-16725-4
Dal Corso, 2022, Environmental crises at the Permian–Triassic mass extinction, Nat. Rev. Earth Environ., 3, 197, 10.1038/s43017-021-00259-4
Du, 2021, Changes in productivity associated with algal-microbial shifts during the Early Triassic recovery of marine ecosystems, Geol. Soc. Am. Bull., 133, 362, 10.1130/B35510.1
Fike, 2015, Rethinking the ancient sulfur cycle, Annu. Rev. Earth Planet. Sci., 43, 593, 10.1146/annurev-earth-060313-054802
Galfetti, 2007, Timing of the Early Triassic carbon cycle perturbations inferred from new U–Pb ages and ammonoid biochronozones, Earth Planet. Sci. Lett., 258, 593, 10.1016/j.epsl.2007.04.023
Gill, 2008, Behavior of carbonate-associated sulfate during meteoric diagenesis and implications for the sulfur isotope paleoproxy, Geochim. Cosmochim. Acta, 72, 4699, 10.1016/j.gca.2008.07.001
Gill, 2011, Geochemical evidence for widespread euxinia in the Later Cambrian ocean, Nature, 469, 80, 10.1038/nature09700
Glasspool, 2010, Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal, Nat. Geosci., 3, 627, 10.1038/ngeo923
Grasby, 2013, Recurrent Early Triassic ocean anoxia, Geology, 41, 175, 10.1130/G33599.1
Grasby, 2015, Mercury anomalies associated with three extinction events (Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) in NW Pangea, Geol. Mag., 153, 285, 10.1017/S0016756815000436
Guo, 2008, Cyclostratigraphy of the Induan (Early Triassic) in West Pingdingshan Section, Chaohu, Anhui Province, Sci. China Ser. D, 51, 22, 10.1007/s11430-007-0156-z
Hammer, 2019, Are Early Triassic extinction events associated with mercury anomalies? A reassessment of the Smithian/Spathian boundary extinction, Earth-Sci. Rev., 195, 179, 10.1016/j.earscirev.2019.04.016
Han, 2022, Early Jurassic long-term oceanic sulfur-cycle perturbations in the Tibetan Himalaya, Earth Planet. Sci. Lett., 578, 10.1016/j.epsl.2021.117261
He, 2019, Possible links between extreme oxygen perturbations and the Cambrian radiation of animals, Nat. Geosci., 12, 468, 10.1038/s41561-019-0357-z
He, 2020, An enormous sulfur isotope excursion indicates marine anoxia during the end-Triassic mass extinction, Sci. Adv., 6, eabb6704, 10.1126/sciadv.abb6704
Horacek, 2007, Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps: Evidence for rapid changes in storage of organic carbon, Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 347, 10.1016/j.palaeo.2006.11.049
Ingvorsen, 1984, Kinetics of sulfate uptake by freshwater and marine species of Desulfovibrio, Arch. Microbiol., 139, 61, 10.1007/BF00692713
Johnson, 2021, Carbonate associated sulfate (CAS) δ34S heterogeneity across the End-Permian Mass Extinction in South China, Earth Planet. Sci. Lett., 574, 10.1016/j.epsl.2021.117172
Jurikova, 2020, Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations, Nat. Geosci., 13, 745, 10.1038/s41561-020-00646-4
Lau, 2016, Marine anoxia and delayed Earth system recovery after the end-Permian extinction, Proc. Natl. Acad. Sci. U. S. A., 113, 2360, 10.1073/pnas.1515080113
Leavitt, 2013, Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record, Proc. Natl. Acad. Sci. U. S. A., 110, 11244, 10.1073/pnas.1218874110
Lehrmann, 2006, Timing of recovery from the end-Permian extinction: geochronologic and biostratigraphic constraints from south China, Geology, 34, 1053, 10.1130/G22827A.1
Lenton, 2018, COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time, Earth-Sci. Rev., 178, 1, 10.1016/j.earscirev.2017.12.004
Li, 2016, Astronomical tuning of the end-Permian extinction and the Early Triassic Epoch of South China and Germany, Earth Planet. Sci. Lett., 441, 10, 10.1016/j.epsl.2016.02.017
Lyu, 2019, Global-ocean circulation changes during the Smithian–Spathian transition inferred from carbon-sulfur cycle records, Earth-Sci. Rev., 195, 114, 10.1016/j.earscirev.2019.01.010
Marenco, 2008, Oxidation of pyrite during extraction of carbonate associated sulfate, Chem. Geol., 247, 124, 10.1016/j.chemgeo.2007.10.006
Martindale, 2019, The survival, recovery, and diversification of metazoan reef ecosystems following the end-Permian mass extinction event, Palaeogeogr. Palaeoclimatol. Palaeoecol., 513, 100, 10.1016/j.palaeo.2017.08.014
Newton, 2007, Stable isotopes of carbon and sulphur as indicators of environmental change: past and present, J. Geol. Soc., 164, 691, 10.1144/0016-76492006-101
Ovtcharova, 2006, New Early to Middle Triassic U–Pb ages from South China: calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery, Earth Planet. Sci. Lett., 243, 463, 10.1016/j.epsl.2006.01.042
Ovtcharova, 2015, Developing a strategy for accurate definition of a geological boundary through radio-isotopic and biochronological dating: the Early–Middle Triassic boundary (South China), Earth-Sci. Rev., 146, 65, 10.1016/j.earscirev.2015.03.006
Owens, 2013, Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event 2, Proc. Natl. Acad. Sci. U. S. A., 110, 18407, 10.1073/pnas.1305304110
Paton, 2010, Late Permian and Early Triassic magmatic pulses in the Angara–Taseeva syncline, Southern Siberian Traps and their possible influence on the environment, Russ. Geol. Geophys., 51, 1012, 10.1016/j.rgg.2010.08.009
Payne, 2007, Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations, Earth Planet. Sci. Lett., 256, 264, 10.1016/j.epsl.2007.01.034
Payne, 2004, Large perturbations of the carbon cycle during recovery from the end-Permian extinction, Science, 305, 506, 10.1126/science.1097023
Present, 2015, Large Carbonate Associated Sulfate isotopic variability between brachiopods, micrite, and other sedimentary components in Late Ordovician strata, Earth Planet. Sci. Lett., 432, 187, 10.1016/j.epsl.2015.10.005
Reichow, 2009, The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis, Earth Planet. Sci. Lett., 277, 9, 10.1016/j.epsl.2008.09.030
Retallack, 2008, Methane release from igneous intrusion of coal during Late Permian extinction events, J. Geol., 116, 1, 10.1086/524120
Romano, 2013, Climatic and biotic upheavals following the end-Permian mass extinction, Nat. Geosci., 6, 57, 10.1038/ngeo1667
Schobben, 2014, Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction, Gondwana Res., 26, 675, 10.1016/j.gr.2013.07.019
Sedlacek, 2014, 87Sr/86Sr stratigraphy from the Early Triassic of Zal, Iran: Linking temperature to weathering rates and the tempo of ecosystem recovery, Geology, 42, 779, 10.1130/G35545.1
Shen, 2019, Mercury enrichments provide evidence of Early Triassic volcanism following the end-Permian mass extinction, Earth-Sci. Rev., 195, 191, 10.1016/j.earscirev.2019.05.010
Shi, 2018, Sulfur isotope evidence for transient marine-shelf oxidation during the Ediacaran Shuram Excursion, Geology, 46, 267, 10.1130/G39663.1
Song, 2012, Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery, Earth Planet. Sci. Lett., 353–354, 12, 10.1016/j.epsl.2012.07.005
Song, 2013, Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: implications for oceanographic changes related to Siberian Traps volcanism, Glob. Planet. Chang., 105, 7, 10.1016/j.gloplacha.2012.10.023
Song, 2014, Early Triassic seawater sulfate drawdown, Geochim. Cosmochim. Acta, 128, 95, 10.1016/j.gca.2013.12.009
Song, 2015, Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic, Earth Planet. Sci. Lett., 424, 140, 10.1016/j.epsl.2015.05.035
Song, 2019, Cooling-driven oceanic anoxia across the Smithian/Spathian boundary (mid-Early Triassic), Earth-Sci. Rev., 195, 133, 10.1016/j.earscirev.2019.01.009
Song, 2021, Conodont calcium isotopic evidence for multiple shelf acidification events during the Early Triassic, Chem. Geol., 562, 10.1016/j.chemgeo.2020.120038
Stanley, 2009, Evidence from ammonoids and conodonts for multiple Early Triassic mass extinctions, Proc. Natl. Acad. Sci. U. S. A., 106, 15264, 10.1073/pnas.0907992106
Stebbins, 2019, Marine sulfur cycle evidence for upwelling and eutrophic stresses during Early Triassic cooling events, Earth-Sci. Rev., 195, 68, 10.1016/j.earscirev.2018.09.007
Stebbins, 2019, Sulfur-isotope evidence for recovery of seawater sulfate concentrations from a PTB minimum by the Smithian–Spathian transition, Earth-Sci. Rev., 195, 83, 10.1016/j.earscirev.2018.08.010
Sun, 2009, Magnetostratigraphy of the Lower Triassic beds from Chaohu (China) and its implications for the Induan–Olenekian stage boundary, Earth Planet. Sci. Lett., 279, 350, 10.1016/j.epsl.2009.01.009
Sun, 2012, Lethally hot temperatures during the Early Triassic greenhouse, Science, 338, 366, 10.1126/science.1224126
Svensen, 2009, Siberian gas venting and the end-Permian environmental crisis, Earth Planet. Sci. Lett., 277, 490, 10.1016/j.epsl.2008.11.015
Thomazo, 2019, Multiple sulfur isotope signals associated with the late Smithian event and the Smithian/Spathian boundary, Earth-Sci. Rev., 195, 96, 10.1016/j.earscirev.2018.06.019
Tian, 2014, Reconstruction of Early Triassic ocean redox conditions based on framboidal pyrite from the Nanpanjiang Basin, South China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 412, 68, 10.1016/j.palaeo.2014.07.018
Tong, 2011, 85, 399
Tong, 2003, A candidate of the Induan–Olenekian boundary stratotype in the Tethyan region, Sci. China Ser. D, 46, 1182, 10.1360/03yd0295
Tong, 2005, High-resolution Induan–Olenekian boundary sequence in Chaohu, Anhui Province, Sci. China Ser. D, 48, 291, 10.1360/04yd0361
Veizer, 1999, 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater, Chem. Geol., 161, 59, 10.1016/S0009-2541(99)00081-9
Wang, 2019, Global mercury cycle during the end-Permian mass extinction and subsequent Early Triassic recovery, Earth Planet. Sci. Lett., 513, 144, 10.1016/j.epsl.2019.02.026
Wang, 2021, Marine productivity variations and environmental perturbations across the early Triassic Smithian–Spathian boundary: Insights from zinc and carbon isotopes, Glob. Planet. Chang., 103579
Wei, 2015, Environmental controls on marine ecosystem recovery following mass extinctions, with an example from the Early Triassic, Earth-Sci. Rev., 149, 108, 10.1016/j.earscirev.2014.10.007
Wei, 2020, Millennial-scale ocean redox and δ13C changes across the Permian–Triassic transition at Meishan and implications for the biocrisis, Int. J. Earth Sci., 109, 1753, 10.1007/s00531-020-01869-x
Widmann, 2020, Dynamics of the largest carbon isotope excursion during the Early Triassic biotic recovery, Front. Earth Sci., 8, 10.3389/feart.2020.00196
Wu, 2021, Six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction, Nat. Commun., 12, 2137, 10.1038/s41467-021-22298-7
Zhang, 2018, Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction, Sci. Adv., 4, 10.1126/sciadv.1602921
Zhang, 2019, The Smithian/Spathian boundary (late Early Triassic): A review of ammonoid, conodont, and carbon-isotopic criteria, Earth-Sci. Rev., 195, 7, 10.1016/j.earscirev.2019.02.014
Zhang, 2021, Felsic volcanism as a factor driving the end-Permian mass extinction, Sci. Adv., 7, eabh1390, 10.1126/sciadv.abh1390
Zhao, 2007, Lower Triassic conodont sequence in Chaohu, Anhui Province, China and its global correlation, Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 24, 10.1016/j.palaeo.2006.11.032
Zuo, 2006, Carbon isotope composition of the Lower Triassic marine carbonates, Lower Yangtze Region, South China, Sci. China Ser. D, 49, 225, 10.1007/s11430-006-0225-8