A massive magmatic degassing event drove the Late Smithian Thermal Maximum and Smithian–Spathian boundary mass extinction

Global and Planetary Change - Tập 215 - Trang 103878 - 2022
Yong Du1, Huyue Song1, Thomas J. Algeo1,2,3, Haijun Song1, Li Tian1, Daoliang Chu1, Wei Shi1, Chao Li4,5, Jinnan Tong1
1State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
2State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
3Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013, USA
4State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China
5Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications of Ministry of Natural Resources, Chengdu University of Technology, Chengdu 610059, China

Tài liệu tham khảo

Algeo, 2007, Sequencing events across the Permian–Triassic boundary, Guryul Ravine (Kashmir, India), Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 328, 10.1016/j.palaeo.2006.11.050 Algeo, 2011, Terrestrial–marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems, Palaeogeogr. Palaeoclimatol. Palaeoecol., 308, 1, 10.1016/j.palaeo.2011.01.011 Algeo, 2013, Plankton and productivity during the Permian–Triassic boundary crisis: an analysis of organic carbon fluxes, Glob. Planet. Chang., 105, 52, 10.1016/j.gloplacha.2012.02.008 Algeo, 2015, Reconstruction of secular variation in seawater sulfate concentrations, Biogeosciences, 12, 2131, 10.5194/bg-12-2131-2015 Baresel, 2017, Precise age for the Permian–Triassic boundary in South China from high-precision U-Pb geochronology and Bayesian age-depth modeling, Solid Earth, 8, 361, 10.5194/se-8-361-2017 Benton, 2014, Impacts of global warming on Permo–Triassic terrestrial ecosystems, Gondwana Res., 25, 1308, 10.1016/j.gr.2012.12.010 Bernasconi, 2017, An evaporite-based high-resolution sulfur isotope record of Late Permian and Triassic seawater sulfate, Geochim. Cosmochim. Acta, 204, 331, 10.1016/j.gca.2017.01.047 Berner, 2002, Examination of hypotheses for the Permo–Triassic boundary extinction by carbon cycle modeling, Proc. Natl. Acad. Sci. U. S. A., 99, 4172, 10.1073/pnas.032095199 Berner, 2005, The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic, Geochim. Cosmochim. Acta, 69, 3211, 10.1016/j.gca.2005.03.021 Berner, 2009, Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model, Am. J. Sci., 309, 603, 10.2475/07.2009.03 Bottrell, 2006, Reconstruction of changes in global sulfur cycling from marine sulfate isotopes, Earth-Sci. Rev., 75, 59, 10.1016/j.earscirev.2005.10.004 Brand, 2004, Carbon, oxygen and strontium isotopes in Paleozoic carbonate components: an evaluation of original seawater-chemistry proxies, Chem. Geol., 204, 23, 10.1016/j.chemgeo.2003.10.013 Brayard, 2017, Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna, Sci. Adv., 3, 10.1126/sciadv.1602159 Burdett, 1989, A Neogene seawater sulfur isotope age curve from calcareous pelagic microfossils, Earth Planet. Sci. Lett., 94, 189, 10.1016/0012-821X(89)90138-6 Burgess, 2015, High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction, Sci. Adv., 1, 10.1126/sciadv.1500470 Burgess, 2014, High-precision timeline for Earth’s most severe extinction, Proc. Natl. Acad. Sci. U. S. A., 111, 3316, 10.1073/pnas.1317692111 Burgess, 2017, Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction, Nat. Commun., 8, 1, 10.1038/s41467-017-00083-9 Campbell, 1992, Synchronism of the Siberian Traps and the Permian–Triassic boundary, Science, 258, 1760, 10.1126/science.258.5089.1760 Caravaca, 2017, Early Triassic fluctuations of the global carbon cycle: New evidence from paired carbon isotopes in the western USA basin, Glob. Planet. Chang., 154, 10, 10.1016/j.gloplacha.2017.05.005 Chen, 2020, Intensified chemical weathering during Early Triassic revealed by magnesium isotopes, Geochim. Cosmochim. Acta, 287, 263, 10.1016/j.gca.2020.02.035 Clarkson, 2013, A new high-resolution δ13C record for the Early Triassic: insights from the Arabian Platform, Gondwana Res., 24, 233, 10.1016/j.gr.2012.10.002 Clarkson, 2016, Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery, Nat. Commun., 7, 12236, 10.1038/ncomms12236 Cui, 2013, Initial assessment of the carbon emission rate and climatic consequences during the end-Permian mass extinction, Palaeogeogr. Palaeoclimatol. Palaeoecol., 389, 128, 10.1016/j.palaeo.2013.09.001 Cui, 2021, Massive and rapid predominantly volcanic CO2 emission during the end-Permian mass extinction, Proc. Natl. Acad. Sci. U. S. A., 118, 10.1073/pnas.2014701118 Dai, 2018, Rapid biotic rebound during the late Griesbachian indicates heterogeneous recovery patterns after the Permian–Triassic mass extinction, Geol. Soc. Am. Bull., 130, 2015, 10.1130/B31969.1 Dai, 2021, Calibrating the late Smithian (Early Triassic) crisis: new insights from the Nanpanjiang Basin, South China, Glob. Planet. Chang., 201, 10.1016/j.gloplacha.2021.103492 Dal Corso, 2020, Permo–Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse, Nat. Commun., 11, 2962, 10.1038/s41467-020-16725-4 Dal Corso, 2022, Environmental crises at the Permian–Triassic mass extinction, Nat. Rev. Earth Environ., 3, 197, 10.1038/s43017-021-00259-4 Du, 2021, Changes in productivity associated with algal-microbial shifts during the Early Triassic recovery of marine ecosystems, Geol. Soc. Am. Bull., 133, 362, 10.1130/B35510.1 Fike, 2015, Rethinking the ancient sulfur cycle, Annu. Rev. Earth Planet. Sci., 43, 593, 10.1146/annurev-earth-060313-054802 Galfetti, 2007, Timing of the Early Triassic carbon cycle perturbations inferred from new U–Pb ages and ammonoid biochronozones, Earth Planet. Sci. Lett., 258, 593, 10.1016/j.epsl.2007.04.023 Gill, 2008, Behavior of carbonate-associated sulfate during meteoric diagenesis and implications for the sulfur isotope paleoproxy, Geochim. Cosmochim. Acta, 72, 4699, 10.1016/j.gca.2008.07.001 Gill, 2011, Geochemical evidence for widespread euxinia in the Later Cambrian ocean, Nature, 469, 80, 10.1038/nature09700 Glasspool, 2010, Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal, Nat. Geosci., 3, 627, 10.1038/ngeo923 Grasby, 2013, Recurrent Early Triassic ocean anoxia, Geology, 41, 175, 10.1130/G33599.1 Grasby, 2015, Mercury anomalies associated with three extinction events (Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) in NW Pangea, Geol. Mag., 153, 285, 10.1017/S0016756815000436 Guo, 2008, Cyclostratigraphy of the Induan (Early Triassic) in West Pingdingshan Section, Chaohu, Anhui Province, Sci. China Ser. D, 51, 22, 10.1007/s11430-007-0156-z Hammer, 2019, Are Early Triassic extinction events associated with mercury anomalies? A reassessment of the Smithian/Spathian boundary extinction, Earth-Sci. Rev., 195, 179, 10.1016/j.earscirev.2019.04.016 Han, 2022, Early Jurassic long-term oceanic sulfur-cycle perturbations in the Tibetan Himalaya, Earth Planet. Sci. Lett., 578, 10.1016/j.epsl.2021.117261 He, 2019, Possible links between extreme oxygen perturbations and the Cambrian radiation of animals, Nat. Geosci., 12, 468, 10.1038/s41561-019-0357-z He, 2020, An enormous sulfur isotope excursion indicates marine anoxia during the end-Triassic mass extinction, Sci. Adv., 6, eabb6704, 10.1126/sciadv.abb6704 Horacek, 2007, Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps: Evidence for rapid changes in storage of organic carbon, Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 347, 10.1016/j.palaeo.2006.11.049 Ingvorsen, 1984, Kinetics of sulfate uptake by freshwater and marine species of Desulfovibrio, Arch. Microbiol., 139, 61, 10.1007/BF00692713 Johnson, 2021, Carbonate associated sulfate (CAS) δ34S heterogeneity across the End-Permian Mass Extinction in South China, Earth Planet. Sci. Lett., 574, 10.1016/j.epsl.2021.117172 Jurikova, 2020, Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations, Nat. Geosci., 13, 745, 10.1038/s41561-020-00646-4 Lau, 2016, Marine anoxia and delayed Earth system recovery after the end-Permian extinction, Proc. Natl. Acad. Sci. U. S. A., 113, 2360, 10.1073/pnas.1515080113 Leavitt, 2013, Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record, Proc. Natl. Acad. Sci. U. S. A., 110, 11244, 10.1073/pnas.1218874110 Lehrmann, 2006, Timing of recovery from the end-Permian extinction: geochronologic and biostratigraphic constraints from south China, Geology, 34, 1053, 10.1130/G22827A.1 Lenton, 2018, COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time, Earth-Sci. Rev., 178, 1, 10.1016/j.earscirev.2017.12.004 Li, 2016, Astronomical tuning of the end-Permian extinction and the Early Triassic Epoch of South China and Germany, Earth Planet. Sci. Lett., 441, 10, 10.1016/j.epsl.2016.02.017 Lyu, 2019, Global-ocean circulation changes during the Smithian–Spathian transition inferred from carbon-sulfur cycle records, Earth-Sci. Rev., 195, 114, 10.1016/j.earscirev.2019.01.010 Marenco, 2008, Oxidation of pyrite during extraction of carbonate associated sulfate, Chem. Geol., 247, 124, 10.1016/j.chemgeo.2007.10.006 Martindale, 2019, The survival, recovery, and diversification of metazoan reef ecosystems following the end-Permian mass extinction event, Palaeogeogr. Palaeoclimatol. Palaeoecol., 513, 100, 10.1016/j.palaeo.2017.08.014 Newton, 2007, Stable isotopes of carbon and sulphur as indicators of environmental change: past and present, J. Geol. Soc., 164, 691, 10.1144/0016-76492006-101 Ovtcharova, 2006, New Early to Middle Triassic U–Pb ages from South China: calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery, Earth Planet. Sci. Lett., 243, 463, 10.1016/j.epsl.2006.01.042 Ovtcharova, 2015, Developing a strategy for accurate definition of a geological boundary through radio-isotopic and biochronological dating: the Early–Middle Triassic boundary (South China), Earth-Sci. Rev., 146, 65, 10.1016/j.earscirev.2015.03.006 Owens, 2013, Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event 2, Proc. Natl. Acad. Sci. U. S. A., 110, 18407, 10.1073/pnas.1305304110 Paton, 2010, Late Permian and Early Triassic magmatic pulses in the Angara–Taseeva syncline, Southern Siberian Traps and their possible influence on the environment, Russ. Geol. Geophys., 51, 1012, 10.1016/j.rgg.2010.08.009 Payne, 2007, Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations, Earth Planet. Sci. Lett., 256, 264, 10.1016/j.epsl.2007.01.034 Payne, 2004, Large perturbations of the carbon cycle during recovery from the end-Permian extinction, Science, 305, 506, 10.1126/science.1097023 Present, 2015, Large Carbonate Associated Sulfate isotopic variability between brachiopods, micrite, and other sedimentary components in Late Ordovician strata, Earth Planet. Sci. Lett., 432, 187, 10.1016/j.epsl.2015.10.005 Reichow, 2009, The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis, Earth Planet. Sci. Lett., 277, 9, 10.1016/j.epsl.2008.09.030 Retallack, 2008, Methane release from igneous intrusion of coal during Late Permian extinction events, J. Geol., 116, 1, 10.1086/524120 Romano, 2013, Climatic and biotic upheavals following the end-Permian mass extinction, Nat. Geosci., 6, 57, 10.1038/ngeo1667 Schobben, 2014, Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction, Gondwana Res., 26, 675, 10.1016/j.gr.2013.07.019 Sedlacek, 2014, 87Sr/86Sr stratigraphy from the Early Triassic of Zal, Iran: Linking temperature to weathering rates and the tempo of ecosystem recovery, Geology, 42, 779, 10.1130/G35545.1 Shen, 2019, Mercury enrichments provide evidence of Early Triassic volcanism following the end-Permian mass extinction, Earth-Sci. Rev., 195, 191, 10.1016/j.earscirev.2019.05.010 Shi, 2018, Sulfur isotope evidence for transient marine-shelf oxidation during the Ediacaran Shuram Excursion, Geology, 46, 267, 10.1130/G39663.1 Song, 2012, Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery, Earth Planet. Sci. Lett., 353–354, 12, 10.1016/j.epsl.2012.07.005 Song, 2013, Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: implications for oceanographic changes related to Siberian Traps volcanism, Glob. Planet. Chang., 105, 7, 10.1016/j.gloplacha.2012.10.023 Song, 2014, Early Triassic seawater sulfate drawdown, Geochim. Cosmochim. Acta, 128, 95, 10.1016/j.gca.2013.12.009 Song, 2015, Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic, Earth Planet. Sci. Lett., 424, 140, 10.1016/j.epsl.2015.05.035 Song, 2019, Cooling-driven oceanic anoxia across the Smithian/Spathian boundary (mid-Early Triassic), Earth-Sci. Rev., 195, 133, 10.1016/j.earscirev.2019.01.009 Song, 2021, Conodont calcium isotopic evidence for multiple shelf acidification events during the Early Triassic, Chem. Geol., 562, 10.1016/j.chemgeo.2020.120038 Stanley, 2009, Evidence from ammonoids and conodonts for multiple Early Triassic mass extinctions, Proc. Natl. Acad. Sci. U. S. A., 106, 15264, 10.1073/pnas.0907992106 Stebbins, 2019, Marine sulfur cycle evidence for upwelling and eutrophic stresses during Early Triassic cooling events, Earth-Sci. Rev., 195, 68, 10.1016/j.earscirev.2018.09.007 Stebbins, 2019, Sulfur-isotope evidence for recovery of seawater sulfate concentrations from a PTB minimum by the Smithian–Spathian transition, Earth-Sci. Rev., 195, 83, 10.1016/j.earscirev.2018.08.010 Sun, 2009, Magnetostratigraphy of the Lower Triassic beds from Chaohu (China) and its implications for the Induan–Olenekian stage boundary, Earth Planet. Sci. Lett., 279, 350, 10.1016/j.epsl.2009.01.009 Sun, 2012, Lethally hot temperatures during the Early Triassic greenhouse, Science, 338, 366, 10.1126/science.1224126 Svensen, 2009, Siberian gas venting and the end-Permian environmental crisis, Earth Planet. Sci. Lett., 277, 490, 10.1016/j.epsl.2008.11.015 Thomazo, 2019, Multiple sulfur isotope signals associated with the late Smithian event and the Smithian/Spathian boundary, Earth-Sci. Rev., 195, 96, 10.1016/j.earscirev.2018.06.019 Tian, 2014, Reconstruction of Early Triassic ocean redox conditions based on framboidal pyrite from the Nanpanjiang Basin, South China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 412, 68, 10.1016/j.palaeo.2014.07.018 Tong, 2011, 85, 399 Tong, 2003, A candidate of the Induan–Olenekian boundary stratotype in the Tethyan region, Sci. China Ser. D, 46, 1182, 10.1360/03yd0295 Tong, 2005, High-resolution Induan–Olenekian boundary sequence in Chaohu, Anhui Province, Sci. China Ser. D, 48, 291, 10.1360/04yd0361 Veizer, 1999, 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater, Chem. Geol., 161, 59, 10.1016/S0009-2541(99)00081-9 Wang, 2019, Global mercury cycle during the end-Permian mass extinction and subsequent Early Triassic recovery, Earth Planet. Sci. Lett., 513, 144, 10.1016/j.epsl.2019.02.026 Wang, 2021, Marine productivity variations and environmental perturbations across the early Triassic Smithian–Spathian boundary: Insights from zinc and carbon isotopes, Glob. Planet. Chang., 103579 Wei, 2015, Environmental controls on marine ecosystem recovery following mass extinctions, with an example from the Early Triassic, Earth-Sci. Rev., 149, 108, 10.1016/j.earscirev.2014.10.007 Wei, 2020, Millennial-scale ocean redox and δ13C changes across the Permian–Triassic transition at Meishan and implications for the biocrisis, Int. J. Earth Sci., 109, 1753, 10.1007/s00531-020-01869-x Widmann, 2020, Dynamics of the largest carbon isotope excursion during the Early Triassic biotic recovery, Front. Earth Sci., 8, 10.3389/feart.2020.00196 Wu, 2021, Six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction, Nat. Commun., 12, 2137, 10.1038/s41467-021-22298-7 Zhang, 2018, Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction, Sci. Adv., 4, 10.1126/sciadv.1602921 Zhang, 2019, The Smithian/Spathian boundary (late Early Triassic): A review of ammonoid, conodont, and carbon-isotopic criteria, Earth-Sci. Rev., 195, 7, 10.1016/j.earscirev.2019.02.014 Zhang, 2021, Felsic volcanism as a factor driving the end-Permian mass extinction, Sci. Adv., 7, eabh1390, 10.1126/sciadv.abh1390 Zhao, 2007, Lower Triassic conodont sequence in Chaohu, Anhui Province, China and its global correlation, Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 24, 10.1016/j.palaeo.2006.11.032 Zuo, 2006, Carbon isotope composition of the Lower Triassic marine carbonates, Lower Yangtze Region, South China, Sci. China Ser. D, 49, 225, 10.1007/s11430-006-0225-8