A first-principles study of the effects of electron–phonon coupling on the thermoelectric properties: a case study of the SiGe compound

Journal of Materials Chemistry A - Tập 6 Số 25 - Trang 12125-12131
D. D. Fan1,2,3,4, Huijun Liu1,2,3,4, Long Cheng1,2,3,4, Jinghua Liang1,2,3,4, Peiheng Jiang1,2,3,4
1China
2Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
3Wuhan 430072
4Wuhan University

Tóm tắt

The lattice thermal conductivity of the SiGe compound can be significantly reduced by electron–phonon coupling at higher carrier concentration, which in turn obviously enhances its thermoelectric figure-of-merit.

Từ khóa


Tài liệu tham khảo

H. J. Goldsmid , Thermoelectric Refrigeration , Plenum , New York , 1964

Pei, 2011, Nature, 473, 66, 10.1038/nature09996

Liu, 2012, Phys. Rev. Lett., 108, 166601, 10.1103/PhysRevLett.108.166601

Heremans, 2008, Science, 321, 554, 10.1126/science.1159725

Snyder, 2008, Nat. Mater., 7, 105, 10.1038/nmat2090

Zhao, 2014, Nature, 508, 373, 10.1038/nature13184

Bentien, 2004, Phys. Rev. B: Condens. Matter Mater. Phys., 69, 045107, 10.1103/PhysRevB.69.045107

Bentien, 2006, Phys. Rev. B: Condens. Matter Mater. Phys., 73, 094301, 10.1103/PhysRevB.73.094301

May, 2010, Phys. Rev. B: Condens. Matter Mater. Phys., 81, 125205, 10.1103/PhysRevB.81.125205

Liao, 2015, Phys. Rev. Lett., 114, 115901, 10.1103/PhysRevLett.114.115901

Zhu, 2016, Adv. Electron. Mater., 2, 1600171, 10.1002/aelm.201600171

Wang, 2016, J. Appl. Phys., 119, 225109, 10.1063/1.4953366

Yang, 2016, Appl. Phys. Lett., 109, 242103, 10.1063/1.4971985

Cheng, 2017, Phys. Chem. Chem. Phys., 19, 21714, 10.1039/C7CP03667A

Wang, 2017, Phys. Rev. Mater., 1, 034601, 10.1103/PhysRevMaterials.1.034601

CRC Handbook of Thermoelectrics , ed. D. M. Rowe , CRC , BocaRaton, FL , 1995

Giannozzi, 2009, J. Phys.: Condens. Matter, 21, 395502

Hartwigsen, 1998, Phys. Rev. B: Condens. Matter Mater. Phys., 58, 3641, 10.1103/PhysRevB.58.3641

Perdew, 1996, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

Baroni, 2001, Rev. Mod. Phys., 73, 515, 10.1103/RevModPhys.73.515

J. M. Ziman , Electrons and Phonons: The Theory of Transport Phenomena in Solids , Clarendon Press , Oxford , 1960

Bardeen, 1950, Phys. Rev., 80, 72, 10.1103/PhysRev.80.72

Long, 2009, J. Am. Chem. Soc., 131, 17728, 10.1021/ja907528a

Cai, 2014, J. Am. Chem. Soc., 136, 6269, 10.1021/ja4109787

Liao, 2015, Phys. Rev. B: Condens. Matter Mater. Phys., 91, 235419, 10.1103/PhysRevB.91.235419

Jiang, 2017, Carbon, 113, 108, 10.1016/j.carbon.2016.11.038

Noffsinger, 2010, Comput. Phys. Commun., 181, 2140, 10.1016/j.cpc.2010.08.027

Li, 2015, Phys. Rev. B: Condens. Matter Mater. Phys., 92, 075405, 10.1103/PhysRevB.92.075405

Mustafa, 2016, Phys. Rev. B, 94, 155105, 10.1103/PhysRevB.94.155105

Liu, 2017, Phys. Rev. B, 95, 075206, 10.1103/PhysRevB.95.075206

Ma, 2018, Phys. Rev. B, 97, 045201, 10.1103/PhysRevB.97.045201

Li, 2014, Comput. Phys. Commun., 185, 1747, 10.1016/j.cpc.2014.02.015

Fiorentini, 2016, Phys. Rev. B, 94, 085204, 10.1103/PhysRevB.94.085204

Mostofi, 2014, Comput. Phys. Commun., 185, 2309, 10.1016/j.cpc.2014.05.003

Heyd, 2006, J. Chem. Phys., 124, 219906, 10.1063/1.2204597

S. Poncé , E. R.Margine and F.Giustino , 2018 , arXiv:1803.05462

Gu, 2014, Appl. Phys. Lett., 105, 131903, 10.1063/1.4896685

Fan, 2017, Phys. Chem. Chem. Phys., 19, 12913, 10.1039/C7CP01755C

M. Lundstrom , Fundamentals of Carrier Transport , Cambridge University Press , Cambridge, UK , 2nd edn, 2000

Li, 2012, Energy Environ. Sci., 5, 8543, 10.1039/c2ee22622g

Pei, 2014, Adv. Energy Mater., 4, 1400486, 10.1002/aenm.201400486

Fu, 2015, Energy Environ. Sci., 8, 216, 10.1039/C4EE03042G

Zhao, 2016, Science, 351, 141, 10.1126/science.aad3749

Wang, 2008, Appl. Phys. Lett., 93, 193121, 10.1063/1.3027060

Bathula, 2012, Appl. Phys. Lett., 101, 213902, 10.1063/1.4768297