A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ali, 2006, A meta-learning approach to automatic kernel selection for support vector machines, Neurocomputing, 70, 173, 10.1016/j.neucom.2006.03.004
Bensusan, 2000, A higher-order approach to meta-learning, 109
Bergstra, 2012, Random search for hyper-parameter optimization, J. Mach. Learn. Res., 13, 281
Bischl, 2016, Mlr: machine learning in R, J. Mach. Learn. Res., 17, 1
Brazdil, 2009
Brazdil, 1994, Analysis of results, 175
Brodersen, 2010, The balanced accuracy and its posterior distribution, 3121
Casalicchio, 2017, Openml: an R package to connect to the machine learning platform openml, Comput. Stat., 1
Chang, 2011, LIBSVM: a library for support vector machines, ACM Trans. Intell. Syst.Technol., 2, 27:1, 10.1145/1961189.1961199
Chawla, 2002, SMOTE: synthetic minority over-sampling technique, J. Artif. Int. Res., 16, 321
Demšar, 2006, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res., 7, 1
Eggensperger, 2018, Efficient benchmarking of algorithm configurators via model-based surrogates, Mach. Learn., 107, 15, 10.1007/s10994-017-5683-z
Feurer, 2015, Efficient and robust automated machine learning, 2944
Garcia, 2016, Noise detection in the meta-learning level, Neurocomputing, 176, 14, 10.1016/j.neucom.2014.12.100
Gomes, 2012, Combining meta-learning and search techniques to select parameters for support vector machines, Neurocomputing, 75, 3, 10.1016/j.neucom.2011.07.005
Ho, 2002, Complexity measures of supervised classification problems, Pattern Anal. Mach. Intell. IEEE Trans., 24, 289, 10.1109/34.990132
Horn, 2016, A comparative study on large scale kernelized support vector machines, Adv. Data Anal. Classif., 1
Hsu, 2007
Hutter, 2009, Paramils: an automatic algorithm configuration framework, J. Artif. Intell. Res., 267, 10.1613/jair.2861
Kotthoff, 2016, Auto-weka 2.0: automatic model selection and hyperparameter optimization in weka, J. Mach. Learn. Res., 17, 1
Krstajic, 2014, Cross-validation pitfalls when selecting and assessing regression and classification models., J.Cheminform., 6, 10+, 10.1186/1758-2946-6-10
Leite, 2012, Selecting classification algorithms with active testing, 117
López-Ibáñez, 2016, The irace package: iterated racing for automatic algorithm configuration, Oper. Res. Perspect., 3, 43, 10.1016/j.orp.2016.09.002
Lorena, 2018, Data complexity meta-features for regression problems, Mach. Learn., 107, 209, 10.1007/s10994-017-5681-1
Mantovani, 2016, Hyper-parameter tuning of a decision tree induction algorithm, 37
Mantovani, 2015, Effectiveness of random search in SVM hyper-parameter tuning, 1
Mantovani, 2015, To tune or not to tune: Recommending when to adjust SVM hyper-parameters via meta-learning, 1
Mantovani, 2015, Meta-learning recommendation of default hyper-parameter values for svms in classification tasks, 1455, 80
Miranda, 2013, Active testing for SVM parameter selection, 1
Miranda, 2014, Fine-tuning of support vector machine parameters using racing algorithms, 325
Miranda, 2012, An experimental study of the combination of meta-learning with particle swarm algorithms for svm parameter selection, Lect. Notes Comput. Sci., 7335, 562, 10.1007/978-3-642-31137-6_43
Morais, 2013, Complex network measures for data set characterization, 12
L.C. Padierna, M. Carpio, A. Rojas, H. Puga, R. Baltazar, H. Fraire, Hyper-Parameter Tuning for Support Vector Machines by Estimation of Distribution Algorithms, Springer International Publishing, Cham, pp. 787–800.
Pfahringer, 2000, Meta-learning by landmarking various learning algorithms, 743
Priya, 2012, Using genetic algorithms to improve prediction of execution times of ML tasks, 7208 LNAI, 196
Quinlan, 1993
Reif, 2011, Prediction of classifier training time including parameter optimization, 260
Reif, 2012, Meta-learning for evolutionary parameter optimization of classifiers, Mach. Learn., 87, 357, 10.1007/s10994-012-5286-7
Reif, 2014, Automatic classifier selection for non-experts, Pattern Anal. Appl., 17, 83, 10.1007/s10044-012-0280-z
Ridd, 2014, Using metalearning to predict when parameter optimization is likely to improve classification accuracy, 18
Sanders, 2017, Informing the use of hyperparameter optimization through metalearning, 1051
Snoek, 2012, Practical Bayesian optimization of machine learning algorithms, 2951
Soares, 2006, Selecting parameters of svm using meta-learning and kernel matrix-based meta-features, 564
Soares, 2004, A meta-learning method to select the kernel width in support vector regression, Mach. Learn., 54, 195, 10.1023/B:MACH.0000015879.28004.9b
Thornton, 2013, Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms, 847
Vanschoren, 2014, Openml: networked science in machine learning, SIGKDD Explor. Newsl., 15, 49, 10.1145/2641190.2641198
Vapnik, 1995
Vilalta, 2004, Using meta-learning to support data mining, Int. J. Comput. Sci.Appl., 1, 31