Predicting capacitive deionization processes using an electrolytic-capacitor (ELC) model: 2D dynamics, leakages, and multi-ion solutions

Desalination - Tập 525 - Trang 115493 - 2022
Johan Nordstrand1, Léa Zuili1, Esteban Alejandro Toledo-Carrillo1, Joydeep Dutta1,2
1Functional Materials Group, Applied Physics Department, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova universitetscentrum, 106 91 Stockholm, Sweden
2Center of Nanotechnology, KingAbdulaziz University, Jeddah 21589, SaudiArabia

Tài liệu tham khảo

Kucera, 2014 1993 Mekonnen, 2016, Four billion people facing severe water scarcity, Sci. Adv., 2, 1, 10.1126/sciadv.1500323 2018 UN UN González, 2016, Review on supercapacitors: technologies and materials, Renew. Sustain. Energy Rev., 58, 1189, 10.1016/j.rser.2015.12.249 Sales, 2010, Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell, Environ. Sci. Technol., 44, 5661, 10.1021/es100852a Brogioli, 2018, Capacitive energy extraction from double layer expansion (CDLE). Fundamentals of the method, 24, 87, 10.1016/B978-0-12-811370-7.00005-X Brogioli, 2011, A prototype cell for extracting energy from a water salinity difference by means of double layer expansion in nanoporous carbon electrodes, Energy Environ. Sci., 4, 772, 10.1039/c0ee00524j Rica, 2013, Electro-diffusion of ions in porous electrodes for capacitive extraction of renewable energy from salinity differences, Electrochim. Acta, 92, 304, 10.1016/j.electacta.2013.01.063 Iglesias, 2018, vol. 24 Janssen, 2014, Boosting capacitive blue-energy and desalination devices with waste heat, Phys. Rev. Lett., 113, 2, 10.1103/PhysRevLett.113.268501 Brogioli, 2009, Extracting renewable energy from a salinity difference using a capacitor, Phys. Rev. Lett., 103, 31, 10.1103/PhysRevLett.103.058501 Jia, 2014, Blue energy: current technologies for sustainable power generation from water salinity gradient, Renew. Sustain. Energy Rev., 31, 91, 10.1016/j.rser.2013.11.049 Porada, 2013, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58, 1388, 10.1016/j.pmatsci.2013.03.005 Suss, 2015, Water desalination via capacitive deionization: what is it and what can we expect from it?, Energy Environ. Sci., 8, 2296, 10.1039/C5EE00519A Anderson, 2010, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete?, Electrochim. Acta, 55, 3845, 10.1016/j.electacta.2010.02.012 Yu, 2016, Life cycle assessment of environmental impacts and energy demand for capacitive deionization technology, Desalination, 399, 53, 10.1016/j.desal.2016.08.007 Hemmatifar, 2015, Two-dimensional porous electrode model for capacitive deionization, J. Phys. Chem. C, 119, 24681, 10.1021/acs.jpcc.5b05847 Guyes, 2017, A one-dimensional model for water desalination by flow-through electrode capacitive deionization, Desalination, 415, 8, 10.1016/j.desal.2017.03.013 Qu, 2018, Charging and transport dynamics of a flow-through electrode capacitive deionization system, J. Phys. Chem. B, 122, 240, 10.1021/acs.jpcb.7b09168 Laxman, 2019, Tailoring the pressure drop and fluid distribution of a capacitive deionization device, Desalination, 449, 111, 10.1016/j.desal.2018.10.021 Xu, 2018, Selection of carbon electrode materials, vol. 24, 65, 10.1016/B978-0-12-811370-7.00004-8 Laxman, 2014, Enhancement in ion adsorption rate and desalination efficiency in a capacitive deionization cell through improved electric field distribution using electrodes composed of activated carbon cloth coated with zinc oxide nanorods, Appl. Mater. Interfaces, 6, 10113, 10.1021/am501041t Laxman, 2015, Improved desalination by zinc oxide nanorod induced electric field enhancement in capacitive deionization of brackish water, Desalination, 359, 64, 10.1016/j.desal.2014.12.029 Laxman, 2015, Effect of a semiconductor dielectric coating on the salt adsorption capacity of a porous electrode in a capacitive deionization cell, Electrochim. Acta, 166, 329, 10.1016/j.electacta.2015.03.049 Suss, 2013, Impedance-based study of capacitive porous carbon electrodes with hierarchical and bimodal porosity, J. Power Sources, 241, 266, 10.1016/j.jpowsour.2013.03.178 Suss, 2012, Capacitive desalination with flow-through electrodes, Energy Environ. Sci., 5, 9511, 10.1039/c2ee21498a Porada, 2012, Effect of electrode thickness variation on operation of capacitive deionization, Electrochim. Acta, 75, 148, 10.1016/j.electacta.2012.04.083 Li, 2010, Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization, Sep. Purif. Technol., 75, 8, 10.1016/j.seppur.2010.07.003 Wang, 2011, Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes, J. Power Sources, 196, 5209, 10.1016/j.jpowsour.2011.02.019 Mutha, 2018, Salt rejection in flow-between capacitive deionization devices, Desalination, 437, 154, 10.1016/j.desal.2018.03.008 Gao, 2014, Enhancement of charge efficiency for a capacitive deionization cell using carbon xerogel with modified potential of zero charge, Electrochem. Commun., 39, 22, 10.1016/j.elecom.2013.12.004 Santos, 2018, Maximizing volumetric removal capacity in capacitive deionization by adjusting electrode thickness and charging mode, J. Electrochem. Soc., 165, 294, 10.1149/2.1011807jes Rommerskirchen, 2018, Energy recovery and process design in continuous flow − electrode capacitive deionization processes, Sustain. Chem. Eng., 6, 13007, 10.1021/acssuschemeng.8b02466 Wang, 2015, Parameter optimization based on capacitive deionization for highly efficient desalination of domestic wastewater biotreated effluent and the fouled electrode regeneration, Desalination, 365, 407, 10.1016/j.desal.2015.03.025 Biesheuvel, 2014, Attractive forces in microporous carbon electrodes for capacitive deionization, J. Solid State Electrochem., 18, 1365, 10.1007/s10008-014-2383-5 Demirer, 2013, Energetic performance optimization of a capacitive deionization system operating with transient cycles and brackish water, Desalination, 314, 130, 10.1016/j.desal.2013.01.014 Biesheuvel, 2015 Hassanvand, 2018, A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization, Water Res., 131, 100, 10.1016/j.watres.2017.12.015 2018 Biesheuvel, 2011, Diffuse charge and Faradaic reactions in porous electrodes, Phys. Rev. E, 83, 10.1103/PhysRevE.83.061507 Suss, 2014, In situ spatially and temporally resolved measurements of salt concentration between charging porous electrodes for desalination by capacitive deionization, Environ. Sci. Technol., 48, 2008, 10.1021/es403682n Nordstrand, 2019, Dynamic Langmuir model: a simpler approach to modeling capacitive deionization, J. Phys. Chem. C, 123, 16479, 10.1021/acs.jpcc.9b04198 Nordstrand, 2019, An easy-to-use tool for modeling the dynamics of capacitive deionization, J. Phys. Chem. A, 123, 6628, 10.1021/acs.jpca.9b05503 Nordstrand, 2020, Simplified prediction of ion removal in capacitive deionization of multi-ion solutions, Langmuir, 36, 1338, 10.1021/acs.langmuir.9b03571 Nordstrand, 2020, Predicting and enhancing the ion selectivity in multi-ion capacitive deionization, Langmuir, 36, 8476, 10.1021/acs.langmuir.0c00982 Nordstrand, 2020, Basis and prospects of combining electroadsorption modeling approaches for capacitive deionization, Physics (College. Park. Md), 2, 309 Nordstrand, 2020, Design principles for enhanced up-scaling of flow-through capacitive deionization for water desalination, Desalination, 500 Nordstrand, 2020, An extended randles circuit and a systematic model-development approach for capacitive deionization, J. Electrochem. Soc., 2020 Nordstrand, 2021, Flexible modeling and control of capacitive-deionization processes through a linear-state-space dynamic-Langmuir model, npj CleanWater, 4, 1 Dykstra, 2016, Resistance identification and rational process design in capacitive deionization, Water Res., 88, 358, 10.1016/j.watres.2015.10.006 Dongowski, 1999, Permeation of bile acids across artificial lipid membranes and caco-2 monolayers, Pharmazie, 54, 517 Brug, 1984, The analysis of electrode impedances complicated by the presence of a constant phase element, J. Electroanal. Chem., 176, 275, 10.1016/S0022-0728(84)80324-1 Porada, 2013, Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization, Energy Environ. Sci., 6, 3700, 10.1039/c3ee42209g Biesheuvel, 2010, Nonlinear dynamics of capacitive charging and desalination by porous electrodes, Phys.Rev. E Stat. Nonlinear Soft Matter Phys., 81, 1, 10.1103/PhysRevE.81.031502 Biesheuvel, 2011, Theory of membrane capacitive deionization including the effect of the electrode pore space, J. Colloid Interface Sci., 360, 239, 10.1016/j.jcis.2011.04.049 Perez, 2013, Macro analysis of the electro-adsorption process in low concentration NaCl solutions for water desalination applications, J. Electrochem. Soc., 160, E13, 10.1149/2.025303jes Nordstrand, 2020, Relaxed adsorption-flow coupling enables stable COMSOL Multiphysics® modeling of upscaled capacitive deionization Laxman, 2018, Nanoparticulate dielectric overlayer for enhanced electric fields in a capacitive deionization device, ACS Appl. Mater. Interfaces, 10, 5941, 10.1021/acsami.7b16540 Qin, 2019, Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis, Desalination, 455, 100, 10.1016/j.desal.2019.01.003 Ramachandran, 2019, Comments on “Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis”, Desalination, 461, 30, 10.1016/j.desal.2019.03.010 Zhao, 2012, Time-dependent ion selectivity in capacitive charging of porous electrodes, J. Colloid Interface Sci., 384, 38, 10.1016/j.jcis.2012.06.022 Nordstrand, 2021, A new automated model brings stability to finite-element simulations of capacitive deionization, Nano Sel., 1–15 Alvarado Ávila, 2020, Improved chlorate production with platinum nanoparticles deposited on fluorinated activated carbon cloth electrodes, Clean. Eng. Technol., 1 Yuan, 2020, Is electrosynthesis always green and advantageous compared to traditional methods?, Nat. Commun., 11, 2018