The probability of majority inversion in a two-stage voting system with three states

Springer Science and Business Media LLC - Tập 84 Số 4 - Trang 525-546 - 2018
Serguei Kaniovski1, Alexander Zaigraev2
1Austrian Institute of Economic Research (WIFO), Vienna, Austria
2Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Baldoni, V., Berline, N., De Loera, J. A., Dutra, B., Köppe, M., Moreinis, S., Pinto, G., Vergne, M., & Wu, J. (2014). A user’s guide for LattE integrale v1.7.2. https://www.math.ucdavis.edu/~latte

Casella, G., & Berger, R. L. (2002). Statistical inference. Belmont: Duxbury Press.

De Loera, J. A., Dutra, B., Köppe, M., Moreinis, S., Pinto, G., & Wu, J. (2013). Software for exact integration of polynomials over polyhedra. Computational geometry: Theory and applications, 46, 232–252.

De Mouzon, O., Laurent, T., Le Breton, M., & Lepelley, D. (2017). The theoretical Shapley–Shubik probability of an election inversion in a toy symmetric version of the U.S. presidential electoral system. Working Paper.

Feix, M. R., Lepelley, D., Merlin, V. R., & Rouet, J.-L. (2004). The probability of conflicts in a U.S. presidential type election. Economic Theory, 23, 227–257.

Felsenthal, D. S., & Machover, M. (1998). The measurement of voting power: Theory and practice, problems and paradoxes. Cheltenham: Edward Elgar.

Kikuchi, K. (2016). The likelihood of majority inversion in an indirect voting system. Waseda University–School of Political Science and Economics. Working Paper.

Lepelley, D., Merlin, V. R., & Rouet, J.-L. (2011). Three ways to compute accurately the probability of the referendum paradox. Mathematical Social Sciences, 62, 28–33.

Lepelley, D., Merlin, V. R., Rouet, J.-L., & Vidu, L. (2014). Referendum paradox in a federal union with unequal populations: The three state case. Economics Bulletin, 34, 2201–2207.

Marshall, A. W., Olkin, I., & Arnold, B. C. (2011). Inequalities: Theory of majorization and its applications. New York: Springer.

May, K. (1948). Probabilities of certain election results. The American Mathematical Monthly, 55, 203–209.

Miller, N. R. (2012). Election inversions by the U.S. Electoral College. In D. S. Felsenthal & M. Machover (Eds.), Electoral Systems. Studies in Choice and Welfare (pp. 93–127). Berlin: Springer.

Straffin, P. D. (1977). Homogeneity, independence and power indices. Public Choice, 30, 107–118.

Yitzhaki, S., & Schechtman, E. (2013). The Gini methodology: A primer on a statistical methodology. Springer series in statistics (Vol. 272). New York: Springer.