The probability of majority inversion in a two-stage voting system with three states
Tóm tắt
Từ khóa
Tài liệu tham khảo
Baldoni, V., Berline, N., De Loera, J. A., Dutra, B., Köppe, M., Moreinis, S., Pinto, G., Vergne, M., & Wu, J. (2014). A user’s guide for LattE integrale v1.7.2. https://www.math.ucdavis.edu/~latte
Casella, G., & Berger, R. L. (2002). Statistical inference. Belmont: Duxbury Press.
De Loera, J. A., Dutra, B., Köppe, M., Moreinis, S., Pinto, G., & Wu, J. (2013). Software for exact integration of polynomials over polyhedra. Computational geometry: Theory and applications, 46, 232–252.
De Mouzon, O., Laurent, T., Le Breton, M., & Lepelley, D. (2017). The theoretical Shapley–Shubik probability of an election inversion in a toy symmetric version of the U.S. presidential electoral system. Working Paper.
Feix, M. R., Lepelley, D., Merlin, V. R., & Rouet, J.-L. (2004). The probability of conflicts in a U.S. presidential type election. Economic Theory, 23, 227–257.
Felsenthal, D. S., & Machover, M. (1998). The measurement of voting power: Theory and practice, problems and paradoxes. Cheltenham: Edward Elgar.
Kikuchi, K. (2016). The likelihood of majority inversion in an indirect voting system. Waseda University–School of Political Science and Economics. Working Paper.
Lepelley, D., Merlin, V. R., & Rouet, J.-L. (2011). Three ways to compute accurately the probability of the referendum paradox. Mathematical Social Sciences, 62, 28–33.
Lepelley, D., Merlin, V. R., Rouet, J.-L., & Vidu, L. (2014). Referendum paradox in a federal union with unequal populations: The three state case. Economics Bulletin, 34, 2201–2207.
Marshall, A. W., Olkin, I., & Arnold, B. C. (2011). Inequalities: Theory of majorization and its applications. New York: Springer.
May, K. (1948). Probabilities of certain election results. The American Mathematical Monthly, 55, 203–209.
Miller, N. R. (2012). Election inversions by the U.S. Electoral College. In D. S. Felsenthal & M. Machover (Eds.), Electoral Systems. Studies in Choice and Welfare (pp. 93–127). Berlin: Springer.