The microstructural change of C-S-H at elevated temperature in Portland cement/GGBFS blended system
Tài liệu tham khảo
Fall, 2009, Effect of high temperature on strength and microstructural properties of cemented paste backfill, Fire Saf. J., 44, 642, 10.1016/j.firesaf.2008.12.004
Farzadnia, 2013, Characterization of high strength mortars with nano alumina at elevated temperatures, Cem. Concr. Res., 54, 43, 10.1016/j.cemconres.2013.08.003
Heikal, 2014, Behavior of composite cement pastes containing silica nano-particles at elevated temperature, Constr. Build. Mater., 70, 339, 10.1016/j.conbuildmat.2014.07.078
Chan, 1999, Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures, Cem. Concr. Compos., 21, 23, 10.1016/S0958-9465(98)00034-1
Zhang, 2011, Microstructure analysis of heated Portland cement paste, Procedia Eng., 14, 830, 10.1016/j.proeng.2011.07.105
Ye, 2007, Phase distribution and microstructural changes of self-compacting cement paste at elevated temperature, Cem. Concr. Res., 37, 978, 10.1016/j.cemconres.2007.02.011
Zhang, 2013, Investigation of the structure of heated Portland cement paste by using various techniques, Constr. Build. Mater., 38, 1040, 10.1016/j.conbuildmat.2012.09.071
Mendes, 2008, Phase transformations and mechanical strength of OPC/slag pastes submitted to high temperatures, Mater. Struct., 41, 345, 10.1617/s11527-007-9247-8
Ma, 2015, Mechanical properties of concrete at high temperature—a review, Constr. Build. Mater., 93, 371, 10.1016/j.conbuildmat.2015.05.131
Alonso, 2004, Dehydration and rehydration processes of cement paste exposed to high temperature environments, J. Mater. Sci., 39, 3015, 10.1023/B:JMSC.0000025827.65956.18
Heikal, 2015, Microstructure of composite cements containing blast-furnace slag and silica nano-particles subjected to elevated thermally treatment temperature, Constr. Build. Mater., 93, 1067, 10.1016/j.conbuildmat.2015.05.042
Wang, 2008, The effects of elevated temperature on cement paste containing GGBFS, Cem. Concr. Compos., 30, 992, 10.1016/j.cemconcomp.2007.12.003
Mendes, 2009, Long-term progressive deterioration following fire exposure of OPC versus slag blended cement pastes, Mater. Struct., 42, 95, 10.1617/s11527-008-9369-7
Saito, 1991, Curvature and parametric sensitivity in models for adsorption in micropores, AICHE J., 37, 429, 10.1002/aic.690370312
Fares, 2010, High temperature behaviour of self-consolidating concrete, Cem. Concr. Res., 40, 488, 10.1016/j.cemconres.2009.10.006
Alarcon-Ruiz, 2005, The use of thermal analysis in assessing the effect of temperature on a cement paste, Cem. Concr. Res., 35, 609, 10.1016/j.cemconres.2004.06.015
Grattan-Bellew, 1996, Microstructural investigation of deteriorated Portland cement concretes, Constr. Build. Mater., 10, 3, 10.1016/0950-0618(95)00066-6
Glasser, 1973, The formation and thermal stability of spurrite, Ca5(SiO4)2CO3, Cem. Concr. Res., 3, 23, 10.1016/0008-8846(73)90058-6
Jennings, 2008, Refinements to colloid model of C-S-H in cement: CM-II, Cem. Concr. Res., 38, 275, 10.1016/j.cemconres.2007.10.006
Hu, 2019, Insights into the influencing factors on the micro-mechanical properties of calcium-silicate-hydrate gel, J. Am. Ceram. Soc., 102, 1942, 10.1111/jace.16017
Hu, 2014, Property investigation of calcium–silicate–hydrate (C–S–H) gel in cementitious composites, Mater. Charact., 95, 129, 10.1016/j.matchar.2014.06.012
Wei, 2018, A combined SPM/NI/EDS method to quantify properties of inner and outer C-S-H in OPC and slag-blended cement pastes, Cem. Concr. Compos., 85, 56, 10.1016/j.cemconcomp.2017.09.017
DeJong, 2007, The nanogranular behavior of CSH at elevated temperatures (up to 700 C), Cem. Concr. Res., 37, 1, 10.1016/j.cemconres.2006.09.006
Tennis, 2000, A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes, Cem. Concr. Res., 30, 855, 10.1016/S0008-8846(00)00257-X
Escalante-Garcia, 2004, The chemical composition and microstructure of hydration products in blended cements, Cem. Concr. Compos., 26, 967, 10.1016/j.cemconcomp.2004.02.036
Richardson, 2000, The nature of CSH in model slag-cements, Cem. Concr. Compos., 22, 259, 10.1016/S0958-9465(00)00022-6
Taylor, 2010, Composition and microstructure of 20-year-old ordinary Portland cement–ground granulated blast-furnace slag blends containing 0 to 100% slag, Cem. Concr. Res., 40, 971, 10.1016/j.cemconres.2010.02.012
Faucon, 1999, Aluminum incorporation in calcium silicate hydrates (C− S− H) depending on their ca/Si ratio, J. Phys. Chem. B, 103, 7796, 10.1021/jp990609q
Tajuelo Rodriguez, 2017, Thermal stability of C-S-H phases and applicability of Richardson and Groves' and Richardson C-(A)-S-H(I) models to synthetic C-S-H, Cem. Concr. Res., 93, 45, 10.1016/j.cemconres.2016.12.005
Puertas, 2011, A model for the C-A-S-H gel formed in alkali-activated slag cements, J. Eur. Ceram. Soc., 31, 2043, 10.1016/j.jeurceramsoc.2011.04.036