The microstructural change of C-S-H at elevated temperature in Portland cement/GGBFS blended system

Cement and Concrete Research - Tập 123 - Trang 105773 - 2019
Zijian Jia1, Chun Chen1, Jinjie Shi1, Yamei Zhang1, Zhengming Sun1, Peigen Zhang1
1School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing, China

Tài liệu tham khảo

Fall, 2009, Effect of high temperature on strength and microstructural properties of cemented paste backfill, Fire Saf. J., 44, 642, 10.1016/j.firesaf.2008.12.004 Farzadnia, 2013, Characterization of high strength mortars with nano alumina at elevated temperatures, Cem. Concr. Res., 54, 43, 10.1016/j.cemconres.2013.08.003 Heikal, 2014, Behavior of composite cement pastes containing silica nano-particles at elevated temperature, Constr. Build. Mater., 70, 339, 10.1016/j.conbuildmat.2014.07.078 Chan, 1999, Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures, Cem. Concr. Compos., 21, 23, 10.1016/S0958-9465(98)00034-1 Zhang, 2011, Microstructure analysis of heated Portland cement paste, Procedia Eng., 14, 830, 10.1016/j.proeng.2011.07.105 Ye, 2007, Phase distribution and microstructural changes of self-compacting cement paste at elevated temperature, Cem. Concr. Res., 37, 978, 10.1016/j.cemconres.2007.02.011 Zhang, 2013, Investigation of the structure of heated Portland cement paste by using various techniques, Constr. Build. Mater., 38, 1040, 10.1016/j.conbuildmat.2012.09.071 Mendes, 2008, Phase transformations and mechanical strength of OPC/slag pastes submitted to high temperatures, Mater. Struct., 41, 345, 10.1617/s11527-007-9247-8 Ma, 2015, Mechanical properties of concrete at high temperature—a review, Constr. Build. Mater., 93, 371, 10.1016/j.conbuildmat.2015.05.131 Alonso, 2004, Dehydration and rehydration processes of cement paste exposed to high temperature environments, J. Mater. Sci., 39, 3015, 10.1023/B:JMSC.0000025827.65956.18 Heikal, 2015, Microstructure of composite cements containing blast-furnace slag and silica nano-particles subjected to elevated thermally treatment temperature, Constr. Build. Mater., 93, 1067, 10.1016/j.conbuildmat.2015.05.042 Wang, 2008, The effects of elevated temperature on cement paste containing GGBFS, Cem. Concr. Compos., 30, 992, 10.1016/j.cemconcomp.2007.12.003 Mendes, 2009, Long-term progressive deterioration following fire exposure of OPC versus slag blended cement pastes, Mater. Struct., 42, 95, 10.1617/s11527-008-9369-7 Saito, 1991, Curvature and parametric sensitivity in models for adsorption in micropores, AICHE J., 37, 429, 10.1002/aic.690370312 Fares, 2010, High temperature behaviour of self-consolidating concrete, Cem. Concr. Res., 40, 488, 10.1016/j.cemconres.2009.10.006 Alarcon-Ruiz, 2005, The use of thermal analysis in assessing the effect of temperature on a cement paste, Cem. Concr. Res., 35, 609, 10.1016/j.cemconres.2004.06.015 Grattan-Bellew, 1996, Microstructural investigation of deteriorated Portland cement concretes, Constr. Build. Mater., 10, 3, 10.1016/0950-0618(95)00066-6 Glasser, 1973, The formation and thermal stability of spurrite, Ca5(SiO4)2CO3, Cem. Concr. Res., 3, 23, 10.1016/0008-8846(73)90058-6 Jennings, 2008, Refinements to colloid model of C-S-H in cement: CM-II, Cem. Concr. Res., 38, 275, 10.1016/j.cemconres.2007.10.006 Hu, 2019, Insights into the influencing factors on the micro-mechanical properties of calcium-silicate-hydrate gel, J. Am. Ceram. Soc., 102, 1942, 10.1111/jace.16017 Hu, 2014, Property investigation of calcium–silicate–hydrate (C–S–H) gel in cementitious composites, Mater. Charact., 95, 129, 10.1016/j.matchar.2014.06.012 Wei, 2018, A combined SPM/NI/EDS method to quantify properties of inner and outer C-S-H in OPC and slag-blended cement pastes, Cem. Concr. Compos., 85, 56, 10.1016/j.cemconcomp.2017.09.017 DeJong, 2007, The nanogranular behavior of CSH at elevated temperatures (up to 700 C), Cem. Concr. Res., 37, 1, 10.1016/j.cemconres.2006.09.006 Tennis, 2000, A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes, Cem. Concr. Res., 30, 855, 10.1016/S0008-8846(00)00257-X Escalante-Garcia, 2004, The chemical composition and microstructure of hydration products in blended cements, Cem. Concr. Compos., 26, 967, 10.1016/j.cemconcomp.2004.02.036 Richardson, 2000, The nature of CSH in model slag-cements, Cem. Concr. Compos., 22, 259, 10.1016/S0958-9465(00)00022-6 Taylor, 2010, Composition and microstructure of 20-year-old ordinary Portland cement–ground granulated blast-furnace slag blends containing 0 to 100% slag, Cem. Concr. Res., 40, 971, 10.1016/j.cemconres.2010.02.012 Faucon, 1999, Aluminum incorporation in calcium silicate hydrates (C− S− H) depending on their ca/Si ratio, J. Phys. Chem. B, 103, 7796, 10.1021/jp990609q Tajuelo Rodriguez, 2017, Thermal stability of C-S-H phases and applicability of Richardson and Groves' and Richardson C-(A)-S-H(I) models to synthetic C-S-H, Cem. Concr. Res., 93, 45, 10.1016/j.cemconres.2016.12.005 Puertas, 2011, A model for the C-A-S-H gel formed in alkali-activated slag cements, J. Eur. Ceram. Soc., 31, 2043, 10.1016/j.jeurceramsoc.2011.04.036