Resonances and noise in a stochastic Hindmarsh-Rose model of thalamic neurons
Tóm tắt
Thalamic neurons exhibit subthreshold resonance when stimulated with small sine wave signals of varying frequency and stochastic resonance when noise is added to these signals. We study a stochastic Hindmarsh-Rose model using Monte-Carlo simulations to investigate how noise, in conjunction with subthreshold resonance, leads to a preferred frequency in the firing pattern. The resulting stochastic resonance (SR) exhibits a preferred firing frequency that is approximately exponential in its dependence on the noise amplitude. In similar experiments, frequency dependent SR is found in the reliability of detection of alpha-function inputs under noise, which are more realistic inputs for neurons. A mathematical analysis of the equations reveals that the frequency preference arises from the dynamics of the slow variable. Noise can then transfer the resonance over the firing threshold because of the proximity of the fast subsystem to a Hopf bifurcation point. Our results may have implications for the behavior of thalamic neurons in a network, with noise switching the membrane potential between different resonance modes.
Tài liệu tham khảo
Arnold, L. (1998). Random Dynamical Systems, Berlin: Springer.
Baltanas, J. P. and J. M. Casado (2002). Noise-induced resonances in the Hindmarsh-Rose neuronal model. Phys. Rev. E 65, 041915.
Berdichevsky, V. and M. Gitterman (1996). Stochastic resonance in a bistable piecewise potential: analytical solution. J. Phys. A 29, L447–L452.
Braun, H. A., H. Wissing, K. Schäfer and M. C. Hirsch (1994). Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature 367, 270–273.
Chapeau-Blondeau, F., X. Godivier and N. Chambet (1996). Stochastic resonance in a neuron model that transmits spike trains. Phys. Rev. E 53, 1273–1275.
Destexhe, A., M. Neubig, D. Ulrich and J. Huguenard (1998). Dendritic low-threshold calcium currents in thalamic relay cells. J. Neurosci. 18, 3574–3588.
Douglass, J. K., L. Wilkens, E. Pantazelou and F. Moss (1993). Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365, 337–340.
FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466.
Gammaitoni, L., P. Hänggi, P. Jung and F. Marchesoni (1998). Stochastic resonance. Rev. Mod. Phys. 70, 223–287.
Gardiner, C. W. (1983). Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Berlin: Springer.
Godivier, X. and F. Chapeau-Blondeau (1996). Noise-enhanced transmission of spike trains in the neuron. Europhys. Lett. 35, 473–477.
Hänggi, P., P. Jung, C. Zerbe and F. Moss (1993). Can colored noise improve stochastic resonance? J. Stat. Phys. 70, 25–47.
Hindmarsh, J. L. and R. M. Rose (1984). A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B Biol. Sci. 221, 87–102.
Hutcheon, B., R. M. Miura and E. Puil (1996). Models of subthreshold membrane resonance in neocortical neurons. J. Neurophysiol. 76, 698–714.
Hutcheon, B., R. M. Miura, Y. Yarom and E. Puil (1994). Low-threshold calcium current and resonance in thalamic neurons: a model of frequency preference. J. Neurophysiol. 71, 583–594.
Hutcheon, B. and Y. Yarom (2000). Resonance, oscillation, and the intrinsic frequency preferences of neurons. TINS 23, 216–222.
Jansons, K. M. and G. D. Lythe (1998). Stochastic calculus application to dynamic bifurcations and threshold crossings. J. Stat. Phys. 90, 227–251.
Jaramillo, F. and K. Wiesenfeld (1998). Mechanoelectrical transduction assisted by brownian motion: a role for noise in the auditory system. Nat. Neurosci. 1, 384–388.
Kloeden, P. E. and E. Platen (1992). Numerical Solution of Stochastic Differential Equations, Berlin: Springer.
Lindner, B. and L. Schimansky-Geier (2000). Coherence and stochastic resonance in a two-state system. Phys. Rev. E 61, 6103–6110.
Longtin, A. (1993). Stochastic resonance in neuron models. J. Stat. Phys. 70, 309–327.
Longtin, A. (1997). Autonomous stochastic resonance in bursting neurons. Phys. Rev. E 55, 868–876.
Longtin, A., A. Bulsara and F. Moss (1991). Time-interval sequences in bistable systems and the noise-induced transmission of information by sensory neurons. Phys. Rev. Lett. 67, 656–659.
Longtin, A. and D. Chialvo (1998). Stochastic and deterministic resonances for excitable systems. Phys Rev. Lett. 81, 4012–4015.
Longtin, A. and K. Hinzer (1996). Encoding with bursting, subthreshold oscillations, and noise in mammalian cold receptors. Neural Comp. 8, 215–255.
Massanes, S. and C. Vicente (1999). Nonadiabatic resonances in a noisy FitzHugh-Nagumo neuron model. Phys. Rev. E 59, 4490–4497.
Meunier, C. and A. D. Verga (1988). Noise and bifurcations. J. Stat. Phys. 50, 345–375.
Morse, R. P. and E. F. Evans (1996). Enhancement of vowel coding for cochlear implants by addition of noise. Nat. Med. 2, 928–932.
Moss, F., D. Pierson and D. O’ Gorman (1994). Stochastic resonance: tutorial and update. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 4, 1383–1397.
Nagao, N., H. Nishimura and N. Matsui (2000). A neural chaos model of multistable perception. Neural Processing Lett. 12, 267–276.
Nagumo, J. S., S. Arimoto and S. Yoshizawa (1962). An active pulse transmission line simulating nerve axon. Proc. IRE. 50, 2061–2071.
Osipov, V. V. and E. V. Ponizovskaya (2000). Multivalued stochastic resonance in a model of an excitable neuron. Phys. Lett. A 271, 191–197.
Press, W. H. (1992). Numerical Recipes in C: The Art of Scientific Computing, New York: Cambridge University Press.
Puil, E., H. Meiri and Y. Yarom (1994). Resonant behavior and frequency preference of thalamic neurons. J. Neurophysiol. 71, 575–582.
Robinson, J. W. C., D. E. Asraf, A. R. Bulsara and M. E. Inchiosa (1998). Information-theoretic distance measures and a generalization of stochastic resonance. Phys. Rev. Lett. 81, 2850–2853.
Shimokawa, T., K. Pakdaman and S. Sato (1999). Time-scale matching in the response of a leaky integrate-and-fire neuron model to periodic stimulus with additive noise. Phys. Rev. E 59, 3427–3443.
Stacey, W. C. and D. M. Durand (2000). Stochastic resonance improves signal detection in hippocampal CA1 neurons. J. Neurophysiol. 83, 1394–1402.
Tanabe, S. and K. Pakdaman (2001a). Dynamics of moments of FitzHugh-Nagumo neuronal models and stochastic bifurcations. Phys. Rev. E 63, 031911.
Tanabe, S. and K. Pakdaman (2001b). Noise-enhanced neuronal reliability. Phys. Rev. E 64, 041904.
Terman, D. (1991). Chaotic spikes arising from a model of bursting in excitable membranes. SIAM J. Appl. Math. 51, 1418–1450.
Terman, D. (1992). The transition from bursting to continuous spiking in excitable membrane models. J. Nonlinear Sci. 2, 135–182.
Tuckwell, H. C. (1989). Stochastic Processes in the Neurosciences, CBMS-NSF Regional Conference Series in Applied Mathematics 56, Philadelphia, PA: SIAM.
Wang, W., Y. Wang and Z. D. Wang (1998). Firing and signal transduction associated with an intrinsic oscillation in neuronal systems. Phys. Rev. E 57, R2527–R2530.
Wu, S., W. Ren, H. Kaifen and Z. Huang (2001). Burst and coherence resonance in Rose-Hindmarsh model induced by additive noise. Phys. Lett. A 279, 347–354.