Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation

Fungal Biology Reviews - Tập 28 - Trang 36-55 - 2014
Geoffrey Michael Gadd1,2, Jaleh Bahri-Esfahani1,3, Qianwei Li1, Young Joon Rhee1, Zhan Wei1, Marina Fomina1,4, Xinjin Liang1
1Geomicrobiology Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
2Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China
3The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
4Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotnogo St. 154, Kiev 03680, Ukraine

Tài liệu tham khảo

Abraham, 2014, Actinide oxalates, solid state structures and applications, Coord. Chem. Rev., 266–267, 28, 10.1016/j.ccr.2013.08.036 Adamo, 2000, Weathering of rocks and neogenesis of minerals associated with lichen activity, Appl. Clay Sci., 16, 229, 10.1016/S0169-1317(99)00056-3 Adeyemi, 2005, Fungal degradation of calcium-, lead- and silicon-bearing minerals, Biometals, 18, 269, 10.1007/s10534-005-1539-2 Aguilar, 1999, Oxalate oxidase from Ceriporiopsis subvermispora: biochemical and cytochemical studies, Arch. Biochem. Biophys., 366, 275, 10.1006/abbi.1999.1216 Aimable, 2011, Synthesis of porous and nanostructured particles of CuO via a copper oxalate route, Powder Technol., 208, 467, 10.1016/j.powtec.2010.08.044 Akamatsu, 1994, Production of oxalic acid by wood-rotting basidiomycetes grown on low and high nitrogen culture media, Mater. Org., 28, 251 Aragno, 2012, The oxalate–carbonate pathway: a reliable sink for atmospheric CO2 through calcium carbonate biomineralization in ferralitic tropical soils, 191 Arino, 1997, Lichens on ancient mortars, Int. Biodeterior. Biodegrad., 40, 217, 10.1016/S0964-8305(97)00036-X Arnott, 1982, Calcium oxalate (weddellite) crystals in forest-litter, Scanning Electron Microsc., 3, 1141 Arnott, 1995, Calcium oxalate in fungi, 73 Arvaniti, 2010, Calcium oxalate crystallization on concrete heterogeneities, Chem. Eng. Res. Des., 88, 1455, 10.1016/j.cherd.2009.09.013 Arvieu, 2003, Release of oxalate and protons by ectomycorrhizal fungi in response to P-deficiency and calcium carbonate in nutrient solution, Ann. For. Sci., 60, 815, 10.1051/forest:2003076 Ascaso, 1990, The weathering action of saxicolous lichens in maritime Antarctica, Polar Biol., 11, 33, 10.1007/BF00236519 Asghari, 2013, Bioleaching of spent refinery catalysts: a review, J. Ind. Eng. Chem., 19, 1069, 10.1016/j.jiec.2012.12.005 Banfield, 1999, Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere, Proc. Natl. Acad. Sci. USA, 96, 3404, 10.1073/pnas.96.7.3404 Behnoudnia, 2013, Copper(II) oxalate nanospheres and its usage in preparation of Cu(OH)2, Cu2O and CuO nanostructures: synthesis and growth mechanism, Polyhedron, 56, 102, 10.1016/j.poly.2013.03.051 Bhargava, 1995, Bulk manufacture of YBCO powders by coprecipitation, Phys. C Supercond., 241, 53, 10.1016/0921-4534(94)00638-5 Birkby, 1988, Calcium oxalate crystals on the sporangium of Pilobolus, Mycologist, 2, 68, 10.1016/S0269-915X(88)80009-0 Bjelland, 2002, The occurrence of biomineralization products in four lichen species growing on sandstone in western Norway, Lichenologist, 34, 429, 10.1006/lich.2002.0413 Bonneville, 2009, Plant-driven fungal weathering: early stages of mineral alteration at the nanometer scale, Geology, 37, 615, 10.1130/G25699A.1 Bonneville, 2011, Tree mycorrhiza symbiosis accelerate mineral weathering: evidences from nanometer-scale elemental fluxes at the hypha–mineral interface, Geochim. Cosmochim. Acta, 75, 6988, 10.1016/j.gca.2011.08.041 Braissant, 2002, Is the contribution of bacteria to terrestrial carbon budget greatly underestimated?, Naturwissenschaften, 89, 366, 10.1007/s00114-002-0340-0 Braissant, 2004, Biologically induced mineralization in the tree Milicia excelsa (Moraceae): its causes and consequences to the environment, Geobiology, 2, 59, 10.1111/j.1472-4677.2004.00019.x Brandl, 2001, Heterotrophic leaching, 383 Brandl, 2001, Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi, Hydrometallurgy, 59, 319, 10.1016/S0304-386X(00)00188-2 Burford, 2003, Geomycology: fungal growth in mineral substrata, Mycologist, 17, 98, 10.1017/S0269915X03003112 Burford, 2003, Fungal involvement in bioweathering and biotransformation of rocks and minerals, Mineral. Mag., 67, 1127, 10.1180/0026461036760154 Burford, 2006, Biomineralization of fungal hyphae with calcite (CaCO3) and calcium oxalate mono- and dihydrate in carboniferous limestone microcosms, Geomicrobiol. J., 23, 599, 10.1080/01490450600964375 Burgstaller, 1993, Leaching of metals with fungi, J. Biotechnol., 27, 91, 10.1016/0168-1656(93)90101-R Cailleau, 2011, Turning sunlight into stone: the oxalate–carbonate pathway in a tropical tree ecosystem, Biogeosciences, 8, 1755, 10.5194/bg-8-1755-2011 Cailleau, 2014, Detection of active oxalate–carbonate pathway ecosystems in the Amazon Basin: global implications of a natural potential C sink, Catena, 116, 132, 10.1016/j.catena.2013.12.017 Caneva, 1993, Ecological approach to the genesis of calcium oxalate patinas on stone monuments, Aerobiologia, 9, 149, 10.1007/BF02066256 Carter, 2003, Experimental investigations into the interactions between moisture, rock surface temperatures and an epilithic lichen cover in the bioprotection of limestone, Build. Environ., 38, 1225, 10.1016/S0360-1323(03)00079-9 Carter, 2005, Bioprotection explored: the story of a little known earth surface process, Geomorphology, 67, 273, 10.1016/j.geomorph.2004.10.004 Cezar, 1998, Calcium oxalate: a surface treatment for limestone, J. Conserv. Mus. Stud., 4, 6, 10.5334/jcms.4982 Chen, 2000, Weathering of rocks induced by lichen colonization – a review, Catena, 39, 121, 10.1016/S0341-8162(99)00085-5 Chen, 2011, Process for the recovery of cobalt oxalate from spent lithium-ion batteries, Hydrometallurgy, 108, 80, 10.1016/j.hydromet.2011.02.010 Chen, 2012, Biological materials: functional adaptations and bioinspired designs, Prog. Mater. Sci., 57, 1492, 10.1016/j.pmatsci.2012.03.001 Chisholm, 1987, Hydrated copper oxalate, moolooite, in lichens, Mineral. Mag., 51, 715, 10.1180/minmag.1987.051.363.12 Clausen, 2000, Correlation between oxalic acid production and copper tolerance in Wolfiporia cocos, Int. Biodeterior. Biodegrad., 46, 69, 10.1016/S0964-8305(00)00044-5 Concha-Lozano, 2012, Protective effect of endolithic fungal hyphae on oolitic limestone buildings, J. Cult. Herit., 13, 120, 10.1016/j.culher.2011.07.006 Connolly, 1995, Calcium translocation, calcium oxalate accumulation and hyphal sheath morphology in the white-rot fungus Resinicium bicolor, Can. J. Bot., 73, 927, 10.1139/b95-101 Connolly, 1995, Environmental scanning electron microscopic observation of the hyphal sheath and mycofibrils in Postia placenta, Can. J. Microbiol., 41, 433, 10.1139/m95-058 Courty, 2010, The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts, Soil Biol. Biochem., 42, 679, 10.1016/j.soilbio.2009.12.006 Cromack, 1979, Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus Hysterangium crassum, Soil Biol. Biochem., 11, 463, 10.1016/0038-0717(79)90003-8 Cui, 2008, Metallurgical recovery of metals from electronic waste: a review, J. Hazard. Mater., 158, 228, 10.1016/j.jhazmat.2008.02.001 Cutler, 2010, Eukaryotic microorganisms and stone biodeterioration, Geomicrobiol. J., 27, 630, 10.1080/01490451003702933 Daghino, 2005, Inorganic materials and living organisms: surface modifications and fungal responses to various asbestos forms, Chem. Eur. J., 11, 5611, 10.1002/chem.200500046 de la Fuente, 2008, Morphological study of 16-year patinas formed on copper in a wide range of atmospheric exposures, Corros. Sci., 50, 268, 10.1016/j.corsci.2007.05.030 de la Torre, 1991, Fungi in weathered sandstone from Salamanca cathedral, Spain, Sci. Total Environ., 107, 59, 10.1016/0048-9697(91)90257-F de la Torre, 1993, Biochemical mechanisms of stone alteration carried out by filamentous fungi living on monuments, Biogeochemistry, 19, 129, 10.1007/BF00000875 Del Monte, 1986, Chemical and biological weathering of an historical building: Reggio Emilia cathedral, Sci. Total Environ., 50, 165, 10.1016/0048-9697(86)90358-X Del Monte, 1987, A study of the patina called “scialbatura” on Imperial Roman marbles, Stud. Conserv., 32, 114, 10.1179/sic.1987.32.3.114 Del Monte, 1987, The origin of calcium oxalates on historical buildings, monuments and natural outcrops, Sci. Total Environ., 67, 17, 10.1016/0048-9697(87)90063-5 Dermont, 2008, Soil washing for metal removal: a review of physical/chemical technologies and field applications, J. Hazard. Mater., 152, 1, 10.1016/j.jhazmat.2007.10.043 Doherty, 2007, Durability of the artificial calcium oxalate protective on two Florentine monuments, J. Cult. Herit., 8, 186, 10.1016/j.culher.2006.12.002 Dutton, 1996, Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment, Can. J. Microbiol., 42, 881, 10.1139/m96-114 Dutton, 1994, Purification and characterization of oxalate decarboxylase from Coriolus versicolor, FEMS Microbiol. Lett., 116, 321, 10.1111/j.1574-6968.1994.tb06722.x Edwards, 1991, Preliminary Raman microscopic analyses of a lichen encrustation involved in the biodeterioration of Renaissance frescoes in central Italy, Int. Biodeterior., 27, 1, 10.1016/0265-3036(91)90019-N Edwards, 1997, Calcium oxalate in lichen biodeterioration studied using FT-Raman spectroscopy, Spectrochim. Acta, 53, 99 Elliott, 1999, Extractive decontamination of metal polluted soils using oxalate, Water Air Soil Pollut., 110, 335, 10.1023/A:1005067404259 Eick, 1996, Dissolution of a lunar simulant as affected by pH and organic anions, Geoderma, 74, 139, 10.1016/S0016-7061(96)00055-9 Favero-Longo, 2005, Chrysotile asbestos is progressively converted into a non-fibrous amorphous material by the chelating action of lichen metabolites, J. Environ. Monit., 7, 764, 10.1039/b507569f Favero-Longo, 2009, Lichens on asbestos–cement roofs: bioweathering and biocovering effects, J. Hazard. Mater., 162, 1300, 10.1016/j.jhazmat.2008.06.060 Fomina, 2004, Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi, Geomicrobiol. J., 21, 351, 10.1080/01490450490462066 Fomina, 2005, Role of oxalic acid over-excretion in toxic metal mineral transformations by Beauveria caledonica, Appl. Environ. Microbiol., 71, 371, 10.1128/AEM.71.1.371-381.2005 Fomina, 2005, Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi, Soil Biol. Biochem., 37, 851, 10.1016/j.soilbio.2004.10.013 Fomina, 2007, X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi, Environ. Microbiol., 9, 308, 10.1111/j.1462-2920.2006.01139.x Fomina, 2007, Fungal deterioration of barrier concrete used in nuclear waste disposal, Geomicrobiol. J., 24, 643, 10.1080/01490450701672240 Fomina, 2007, Fungal transformations of uranium oxides, Environ. Microbiol., 9, 1696, 10.1111/j.1462-2920.2007.01288.x Fomina, 2008, Role of fungi in the biogeochemical fate of depleted uranium, Curr. Biol., 18, 375, 10.1016/j.cub.2008.03.011 Fomina, 2010, Rock-building fungi, Geomicrobiol. J., 27, 624, 10.1080/01490451003702974 Foster, 2012, A previously unknown oxalyl-CoA synthetase is important for oxalate catabolism in Arabidopsis, Plant Cell Online, 24, 1217, 10.1105/tpc.112.096032 Foster, 2014, An oxalyl-CoA synthetase is important for oxalate metabolism in Saccharomyces cerevisiae, FEBS Lett., 588, 160, 10.1016/j.febslet.2013.11.026 Fox, 1990, Low-molecular-weight organic acids in selected forest soils of the southeastern USA, Soil Sci. Soc. Am. J., 54, 1139, 10.2136/sssaj1990.03615995005400040037x Fox, 1992, Influence of oxalate loading on phosphorus and aluminium solubility in spodosols, Soil Sci. Soc. Am. J., 56, 290, 10.2136/sssaj1992.03615995005600010046x Frost, 2004, Raman spectroscopy of natural oxalates, Anal. Chim. Acta, 517, 207, 10.1016/j.aca.2004.04.036 Gadd, 1993, Interactions of fungi with toxic metals, New Phytol., 124, 25, 10.1111/j.1469-8137.1993.tb03796.x Gadd, 1999, Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes, Adv. Microb. Physiol., 41, 47, 10.1016/S0065-2911(08)60165-4 2001 2006 Gadd, 2007, Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation, Mycol. Res., 111, 3, 10.1016/j.mycres.2006.12.001 Gadd, 2008, Fungi and their role in the biosphere, 1709 Gadd, 2010, Metals, minerals and microbes: geomicrobiology and bioremediation, Microbiology, 156, 609, 10.1099/mic.0.037143-0 Gadd, 2011, Geomycology, 416 Gadd, 2011, Uranium and fungi, Geomicrobiol. J., 28, 471, 10.1080/01490451.2010.508019 Gadd, 2011, Geomicrobiology of eukaryotic microorganisms, Geomicrobiol. J., 27, 491, 10.1080/01490451003703006 Gadd, 2005, Fungal roles and function in rock, mineral and soil transformations, 201 Gadd, 2012, Geomycology: metals, actinides and biominerals, Environ. Microbiol. Rep., 4, 270, 10.1111/j.1758-2229.2011.00283.x Garcia-Valles, 1997, Coloured mineral coatings on monument surfaces as a result of biomineralization: the case of the Tarragona cathedral (Catalonia), Appl. Geochem., 12, 255, 10.1016/S0883-2927(96)00057-1 George, 2013, Studies on biodegradation of normal concrete surfaces by fungus Fusarium sp., Cem. Concr. Res., 47, 8, 10.1016/j.cemconres.2013.01.010 Gharieb, 1999, Influence of nitrogen source on the solubilization of natural gypsum (CaSO4·2H2O) and the formation of calcium oxalate by different oxalic and citric acid producing fungi, Mycol. Res., 103, 473, 10.1017/S0953756298007382 Gharieb, 1998, Solubilization of natural gypsum (CaSO4·2H2O) and the formation of calcium oxalate by Aspergillus niger and Serpula himantioides, Mycol. Res., 102, 825, 10.1017/S0953756297005510 Giordani, 2003, Determinant factors for the formation of the calcium oxalate minerals, weddellite and whewellite, on the surface of foliose lichens, Lichenologist, 35, 255, 10.1016/S0024-2829(03)00028-8 Gorbushina, 2002, Rock surfaces as life indicators: new ways to demonstrate life and traces of former life, Astrobiology, 2, 203, 10.1089/15311070260192273 Graustein, 1977, Calcium oxalate: occurrence in soils and effects on nutrient and geochemical cycles, Science, 198, 1252, 10.1126/science.198.4323.1252 Grąz, 2009, Abortiporus biennis tolerance to insoluble metal oxides: oxalate secretion, oxalate oxidase activity, and mycelial morphology, Biometals, 22, 401, 10.1007/s10534-008-9176-1 Green, 2003, Copper tolerance of brown-rot fungi: time course of oxalic acid production, Int. Biodeterior. Biodegrad., 51, 145, 10.1016/S0964-8305(02)00099-9 Gu, 1998, Biodeterioration of concrete by the fungus Fusarium, Int. Biodeterior. Biodegrad., 41, 101, 10.1016/S0964-8305(98)00034-1 Guggiari, 2011, Experimental calcium oxalate crystal production and dissolution by selected wood rot fungi, Int. Biodeterior. Biodegrad., 65, 803, 10.1016/j.ibiod.2011.02.012 Han, 2007, Oxaloacetate hydrolase, the C–C bond lyase of oxalate secreting fungi, J. Biol. Chem., 282, 9581, 10.1074/jbc.M608961200 Hastrup, 2012, Enzymatic oxalic acid regulation correlated with wood degradation in four brown-rot fungi, Int. Biodeterior. Biodegrad., 75, 109, 10.1016/j.ibiod.2012.05.030 Hattori, 2007, Subcellular localization of the oxalic acid-producing enzyme, cytochrome c-dependent glyoxylate dehydrogenase in brown-rot fungus Fomitopsis palustris, Cellul. Chem. Technol., 41, 545 Hoffland, 2004, The role of fungi in weathering, Front. Ecol. Environ., 2, 258, 10.1890/1540-9295(2004)002[0258:TROFIW]2.0.CO;2 Horner, 1995, Oak leaf litter rhizomorphs from Iowa and Texas: calcium oxalate producers, Mycologia, 87, 34, 10.2307/3760943 Jarosz-Wilkolazka, 2003, Oxalate production by wood-rotting fungi growing in toxic metal-amended medium, Chemosphere, 52, 541, 10.1016/S0045-6535(03)00235-2 Jarosz-Wilkołazka, 2006, Organic acid production by white rot Basidiomycetes in the presence of metallic oxides, Can. J. Microbiol., 52, 779, 10.1139/w06-032 Johansson, 2008, Quantitative analysis of exudates from soil-living basidiomycetes in pure culture as a response to lead, cadmium and arsenic stress, Soil Biol. Biochem., 40, 2225, 10.1016/j.soilbio.2008.04.016 Johnston, 1993, Biogeochemistry of oxalate in the Antarctic cryptoendolithic lichen-dominated community, Microb. Ecol., 25, 305, 10.1007/BF00171895 Jones, 1985, Chemical activity of lichens on mineral surfaces — a review, Int. Biodeterior., 21, 99 Jones, 1980, Weathering of a basalt by Pertusaria corallina, Lichenologist, 12, 277, 10.1017/S002428298000028X Jones, 1992, Scanning electron microscopy of calcium oxalate on mantle hyphae of hybrid larch roots from a farm forestry experimental site, Micron Microsc. Acta, 23, 315, 10.1016/0739-6260(92)90033-A Jongmans, 1997, Rock-eating fungi, Nature, 389, 682, 10.1038/39493 Joseph, 2012, Protection of metal artifacts with the formation of metal–oxalates complexes by Beauveria bassiana, Front. Microbiol., 2, 1, 10.3389/fmicb.2011.00270 Kathiara, 2000, Detection and partial characterization of oxalate decarboxylase from Agaricus bisporus, Mycol. Res., 104, 345, 10.1017/S095375629900129X Kim, 2010, Facile and rapid synthesis of zinc oxalate nanowires and their decomposition into zinc oxide nanowires, J. Cryst. Growth, 312, 2946, 10.1016/j.jcrysgro.2010.06.029 Kluber, 2010, Ectomycorrhizal mats alter forest soil biogeochemistry, Soil Biol. Biochem., 42, 1607, 10.1016/j.soilbio.2010.06.001 Kolo, 2005, In vitro formation of Ca-oxalates and the mineral glushinskite by fungal interaction with carbonate substrates and seawater, Biogeosciences, 2, 277, 10.5194/bg-2-277-2005 Krumbein, 1989, On the geomicrobiology of yellow, orange, red, brown and black films and crusts developing on several different types of stone and objects of art, 337 Kubicek, 1988, Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger, Appl. Environ. Microbiol., 54, 633, 10.1128/AEM.54.3.633-637.1988 Landeweert, 2001, Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals, Trends Ecol. Evol., 16, 248, 10.1016/S0169-5347(01)02122-X Lapeyrie, 1988, Oxalate synthesis from soil bicarbonate by the mycorrhizal fungus Paxillus involutus, Plant Soil, 110, 3, 10.1007/BF02143532 Lapeyrie, 1987, Oxalic acid synthesis by the mycorrhizal fungus Paxillus involutus (Batsch, ex Fr.) Fr., New Phytol., 106, 139, 10.1111/j.1469-8137.1987.tb04797.x Lapeyrie, 1990, TEM study of intracellular and extracellular calcium oxalate accumulation by ectomycorrhizal fungi in pure culture or in association with Eucalyptus seedlings, Symbiosis, 9, 163 Li, 2011, Oxalate production at different initial Pb2+ concentrations and the influence of oxalate during solid-state fermentation of straw with Phanerochaete chrysosporium, Bioresour. Technol., 102, 8137, 10.1016/j.biortech.2011.05.092 Lian, 2008, Effect of microbial weathering on carbonate rocks, Earth Sci. Front., 15, 90, 10.1016/S1872-5791(09)60009-9 Lian, 2008, Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus, Geochim. Cosmochim. Acta, 72, 87, 10.1016/j.gca.2007.10.005 Lisci, 2003, Lichens and higher plants on stone: a review, Int. Biodeterior. Biodegrad., 51, 1, 10.1016/S0964-8305(02)00071-9 Magnuson, 2004, Organic acid production by filamentous fungi, 307 Magyarosy, 2002, Nickel accumulation and nickel oxalate precipitation by Aspergillus niger, Appl. Microbiol. Biotechnol., 59, 382, 10.1007/s00253-002-1020-x Mäkelä, 2002, Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi, Enzyme Microb. Technol., 30, 542, 10.1016/S0141-0229(02)00012-1 Mäkelä, 2009, Oxalate decarboxylase of the white-rot fungus Dichomitus squalens demonstrates a novel enzyme primary structure an non-induced expression on wood and in liquid cultures, Microbiology, 155, 2726, 10.1099/mic.0.028860-0 Mäkelä, 2010, Oxalate decarboxylase: biotechnological update and prevalence of the enzyme in filamentous fungi, Appl. Microbiol. Biotechnol., 87, 801, 10.1007/s00253-010-2650-z Mäkelä, 2014, Oxalate-metabolising genes of the white-rot fungus Dichomitus squalens are differentially induced on wood and at high proton concentration, PLoS One, 10.1371/journal.pone.0087959 Martin, 2012, Fungi, bacteria and soil pH: the oxalate–carbonate pathway as a model for metabolic interaction, Environ. Microbiol., 14, 2960, 10.1111/j.1462-2920.2012.02862.x Martino, 2003, Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites, Soil Biol. Biochem., 35, 133, 10.1016/S0038-0717(02)00247-X Martino, 2003, Soil fungal hyphae bind and attack asbestos fibres, Angew. Chem. Int. Ed., 42, 219, 10.1002/anie.200390083 Martino, 2004, Physical and biochemical interactions of soil fungi with asbestos fibres, Environ. Toxicol. Chem., 23, 938, 10.1897/03-266 McMaster, 2012, Atomic Force Microscopy of the fungi–mineral interface: applications in mineral dissolution, weathering and biogeochemistry, Curr. Opin. Biotechnol., 23, 562, 10.1016/j.copbio.2012.05.006 Meharg, 2003, The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations, Mycol. Res., 107, 1253, 10.1017/S0953756203008608 Mehta, 1991, Oxalate decarboxylase from Collybia velutipes. Purification, characterization, and cDNA cloning, J. Biol. Chem., 266, 23548, 10.1016/S0021-9258(18)54317-9 Micales, 1997, Localization and induction of oxalate decarboxylase in the brown-rot wood decay fungus Postia placenta, Int. Biodeterior. Biodegrad., 39, 125, 10.1016/S0964-8305(97)00009-7 Monte, 2003, Oxalate film formation on marble specimens caused by fungus, J. Cult. Herit., 4, 255, 10.1016/S1296-2074(03)00051-7 Moussatche, 2011, Characterization of Ceriporiopsis subvermispora bicupin oxalate oxidase expressed in Pichia pastoris, Arch. Biochem. Biophys., 509, 100, 10.1016/j.abb.2011.02.022 Mulligan, 2003, Bioremediation of metal contamination, Environ. Monit. Assess., 84, 45, 10.1023/A:1022874727526 Munir, 2001, A physiological role for oxalic acid biosynthesis in the wood-rotting basidiomycete Fomitopsis palustris, Proc. Natl. Acad. Sci. USA, 98, 11126, 10.1073/pnas.191389598 Munir, 2001, New role for glyoxylate cycle enzymes in wood-rotting basidiomycetes in relation to biosynthesis of oxalic acid, J. Wood Sci., 47, 368, 10.1007/BF00766787 Murphy, 1983, Production of copper oxalate by some copper-tolerant fungi, Trans. Br. Mycol. Soc., 81, 165, 10.1016/S0007-1536(83)80223-X Nakata, 2003, Advances in our understanding of calcium oxalate crystal formation and function in plants, Plant Sci., 164, 901, 10.1016/S0168-9452(03)00120-1 Nevin, 2008, The identification of copper oxalates in a 16th century Cypriot exterior wall painting using micro FTIR, micro Raman spectroscopy and gas chromatography-mass spectrometry, J. Cult. Herit., 9, 154, 10.1016/j.culher.2007.10.002 Nica, 2000, Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers, Int. Biodeterior. Biodegrad., 46, 61, 10.1016/S0964-8305(00)00064-0 Olishevskaya, 2004, Calcium, silicon, aluminium and iron leaching by micromycetes grown in the presence of ground barrier concrete under submerged conditions, Mikrobiol. Zh., 66, 97 Oyarbide, 2001, Trichoderma koningii as a biomineralizing fungous agent of calcium oxalate crystals in typical Argiudolls of the Los Padres Lake natural reserve (Buenos Aires, Argentina), Microbiol. Res., 156, 113, 10.1078/0944-5013-00083 Pedersen, 2000, Construction and characterization of an oxalic acid nonproducing strain of Aspergillus niger, Metab. Eng., 2, 34, 10.1006/mben.1999.0136 Pedersen, 2000, Cloning and characterization of oah, the gene encoding oxaloacetate hydrolase in Aspergillus niger, Mol. General. Genet., 263, 281, 10.1007/s004380051169 Perez-Rodriguez, 2011, Thermal analysis of monument patina containing hydrated calcium oxalates, Thermochim. Acta, 512, 5, 10.1016/j.tca.2010.08.015 Perfettini, 1991, Evaluation of cement degradation by the metabolic activities of two fungal strains, Experientia, 47, 527, 10.1007/BF01949872 Piñar, 2013, Microscopic, chemical, and molecular-biological investigation of the decayed medieval stained window glasses of two Catalonian churches, Int. Biodeterior. Biodegrad., 84, 388, 10.1016/j.ibiod.2012.02.008 Pinna, 1993, Fungal physiology and the formation of calcium oxalate films on stone monuments, Aerobiologia, 9, 157, 10.1007/BF02066257 Pinzari, 2010, Biodegradation of inorganic components in paper documents: formation of calcium oxalate crystals as a consequence of Aspergillus terreus Thom growth, Int. Biodeterior. Biodegrad., 64, 499, 10.1016/j.ibiod.2010.06.001 Pinzari, 2013, Biodegradation of ivory (natural apatite): possible involvement of fungal activity in biodeterioration of the Lewis Chessmen, Environ. Microbiol., 15, 1050, 10.1111/1462-2920.12027 Purvis, 1984, The occurrence of copper oxalate in lichens growing on copper sulphide-bearing rocks in Scandinavia, Lichenologist, 16, 197, 10.1017/S0024282984000347 Purvis, 1996, A review of lichens in metal-enriched environments, Lichenologist, 28, 671, 10.1017/S0024282996000758 Purvis, 2008, Lichens and metals, 175 Purvis, 2008, Mineral phases and element composition of the copper hyperaccumulator lichen Lecanora polytropa, Mineral. Mag., 72, 607, 10.1180/minmag.2008.072.2.607 Radeka, 2007, Influence of lichen biocorrosion on the quality of ceramic roofing tiles, J. Eur. Ceram. Soc., 27, 1763, 10.1016/j.jeurceramsoc.2006.05.001 Ramos, 2014, Kinetics of montmorillonite dissolution. An experimental study of the effect of oxalate, Chem. Geol., 363, 283, 10.1016/j.chemgeo.2013.11.014 Rampazzi, 2004, Analytical investigation of calcium oxalate films on marble monuments, Talanta, 63, 967, 10.1016/j.talanta.2004.01.005 Reddy, 2014, Synthesis and spectroscopic characterization of magnesium oxalate nano-crystals, Spectrochim. Acta Part Mol. Biomol. Spectrosc., 123, 25, 10.1016/j.saa.2013.12.024 Ren, 2007, Degradation of oxalic acid by Coniothyrium minitans and its effects on production and activity of b-1,3-glucanase of this mycoparasite, Biol. Control, 43, 1, 10.1016/j.biocontrol.2007.06.006 Rhee, 2012, Lead transformation to pyromorphite by fungi, Curr. Biol., 22, 237, 10.1016/j.cub.2011.12.017 Rhee, 2014, Pyromorphite formation in a fungal biofilm community growing on lead metal, Environ. Microbiol, 16, 1441, 10.1111/1462-2920.12416 Rosado, 2013, Oxalate biofilm formation in mural paintings due to microorganisms – a comprehensive study, Int. Biodeterior. Biodegrad., 85, 1, 10.1016/j.ibiod.2013.06.013 Rosling, 2004, Carbon allocation to ectomycorrhizal roots and mycelium colonising different mineral substrates, New Phytol., 162, 795, 10.1111/j.1469-8137.2004.01080.x Rosling, 2004, Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals, FEMS Microbiol. Ecol., 47, 31, 10.1016/S0168-6496(03)00222-8 Rosling, 2009, Approaches to modelling mineral weathering by fungi, Fungal Biol. Rev., 23, 1, 10.1016/j.fbr.2009.09.003 Rouse, 2001, The new minerals levinsonite-(Y) [(Y, Nd,Ce)Al(SO4)2(C2O4)·12H2O] and zugshunstite-(Ce) [(Ce,Nd,La)Al(SO4)2(C2O4)·12H2O]: coexisting oxalates with different structures and differentiation of LREE and HREE, Geochim. Cosmochim. Acta, 65, 1101, 10.1016/S0016-7037(00)00568-8 Rowe, 2009, Radiocarbon dating of ancient rock paintings, Anal. Chem., 81, 1728, 10.1021/ac802555g Ruijter, 1999, Oxalic acid production by Aspergillus niger: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese, Microbiology, 145, 2569, 10.1099/00221287-145-9-2569 Ruiz, 2006, First radiocarbon dating of oxalate crusts over Spanish prehistoric rock art, Int. News Rock Art., 46, 1 Ruiz, 2012, Calcium oxalate AMS 14C dating and chronology of post-Palaeolithic rock paintings in the Iberian Peninsula. Two dates from Abrigo de los Oculados (Henarejos, Cuenca, Spain), J. Archaeol. Sci., 39, 2655, 10.1016/j.jas.2012.02.038 Sabbioni, 2003, Organic anions in damage layers on monuments and buildings, Atmos. Environ., 37, 1261, 10.1016/S1352-2310(02)01025-7 Sabbioni, 1998, Black crusts on ancient mortars, Atmos. Environ., 32, 215, 10.1016/S1352-2310(97)00259-8 Sakai, 2006, Subcellular localization of glyoxylate cycle key enzymes involved in oxalate biosynthesis of wood-destroying basidiomycete Fomitopsis palustris grown on glucose, Microbiology, 152, 1857, 10.1099/mic.0.28702-0 Santhiya, 2005, Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid, J. Biotechnol., 116, 171, 10.1016/j.jbiotec.2004.10.011 Sayer, 1997, Solubilization and transformation of insoluble metal compounds to insoluble metal oxalates by Aspergillus niger, Mycol. Res., 101, 653, 10.1017/S0953756296003140 Sayer, 2001, Binding of cobalt and zinc by organic acids and culture filtrates of Aspergillus niger grown in the absence or presence of insoluble cobalt or zinc phosphate, Mycol. Res., 105, 1261, 10.1016/S0953-7562(08)61998-X Sayer, 1995, Solubilization of insoluble compounds by soil fungi: development of a screening method for solubilizing ability and metal tolerance, Mycol. Res., 99, 987, 10.1016/S0953-7562(09)80762-4 Sayer, 1997, Solubilization of some naturally occurring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger, FEMS Microbiol. Lett., 154, 29, 10.1111/j.1574-6968.1997.tb12620.x Sayer, 1999, Lead mineral transformation by fungi, Curr. Biol., 9, 691, 10.1016/S0960-9822(99)80309-1 Scarciglia, 2012, Role of lichens in weathering of granodiorite in the Sila uplands (Calabria, southern Italy), Sediment. Geol., 280, 119, 10.1016/j.sedgeo.2012.05.018 Schilling, 2007, Extraction and translocation of calcium from gypsum during wood biodegradation by oxalate-producing fungi, Int. Biodeterior. Biodegrad., 60, 8, 10.1016/j.ibiod.2006.11.005 Seaward, 1997, Major impact made by lichens in biodeterioration processes, Int. Biodeterior. Biodegrad., 40, 269, 10.1016/S0964-8305(97)00056-5 Seaward, 1989, The role of lichens in the biodeterioration of ancient monuments with particular reference to Central Italy, Int. Biodeterior., 25, 49, 10.1016/0265-3036(89)90028-6 Shamsipur, 2013, Electrochemical synthesis and characterization of zinc oxalate nanoparticles, Mater. Res. Bull., 48, 1275, 10.1016/j.materresbull.2012.12.032 Singh, 2012, Preparation, characterization and catalytic effects of copper oxalate nanocrystals, J. Alloys Compd., 513, 499, 10.1016/j.jallcom.2011.10.100 Smits, 2006, Mineral tunnelling by fungi, 311 Smits, 2012, Plant-driven weathering of apatite – the role of an ectomycorrhizal fungus, Geobiology, 10, 445, 10.1111/j.1472-4669.2012.00331.x Soare, 2006, Precipitation of nanostructured copper oxalate: substructure and growth mechanism, J. Phys. Chem., B110, 17763, 10.1021/jp0606816 Sterflinger, 2000, Fungi as geologic agents, Geomicrobiol. J., 17, 97, 10.1080/01490450050023791 Sterflinger, 2010, Fungi: their role in deterioration of cultural heritage, Fungal Biol. Rev., 24, 47, 10.1016/j.fbr.2010.03.003 Sterflinger, 2012, The revenge of time: fungal deterioration of cultural heritage with particular reference to books, paper and parchment, Environ. Microbiol., 14, 559, 10.1111/j.1462-2920.2011.02584.x Sterflinger, 1999, Patination of marble, sandstone and granite by microbial communities, Z. Dtsch. Geol. Ges., 150, 299 Strasser, 1994, High yield production of oxalic acid for metal leaching purposes by Aspergillus niger, FEMS Microbiol. Lett., 119, 365, 10.1111/j.1574-6968.1994.tb06914.x Stretch, 2002, The nature and rate of weathering by lichens on lava flows on Lanzarote, Geomorphology, 47, 87, 10.1016/S0169-555X(02)00143-5 Sun, 2012, Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries, Waste Manag., 32, 1575, 10.1016/j.wasman.2012.03.027 Sutter, 1983, The mechanism of copper tolerance in Poria placenta (Fr.) Cke and Poria caillantii (Pers.) Fr, Mater. Org., 18, 243 Svedružić, 2005, The enzymes of oxalate metabolism: unexpected structures and mechanisms, Arch. Biochem. Biophys., 433, 176, 10.1016/j.abb.2004.08.032 Sverdrup, 2009, Chemical weathering of soil minerals and the role of biological processes, Fungal Biol. Rev., 23, 94, 10.1016/j.fbr.2009.12.001 Tait, 1999, Fungal production of calcium oxalate in leaf litter microcosms, Soil Biol. Biochem., 31, 1189, 10.1016/S0038-0717(99)00008-5 Tang, 2013, Gene expression analysis of copper tolerance and wood decay in the brown rot fungus Fibroporia radiculosa, Appl. Environ. Microbiol., 79, 1523, 10.1128/AEM.02916-12 Tran, 2013, Recovery of magnesium from Uyuni salar brine as high purity magnesium oxalate, Hydrometallurgy, 138, 93, 10.1016/j.hydromet.2013.05.013 Tuason, 2009, Calcium oxalate biomineralization by Piloderma fallax in response to various levels of calcium and phosphorus, Appl. Environ. Microbiol., 75, 7079, 10.1128/AEM.00325-09 ul Haq, 2009, Synthesis and characterization of uniform fine particles of copper oxalate, Mater. Lett., 63, 2355, 10.1016/j.matlet.2009.08.008 Uutela, 2003, Biogenic thiosulfate and oxalate in paper machine deposits connected to corrosion of stainless steels, Int. Biodeterior. Biodegrad., 51, 19, 10.1016/S0964-8305(02)00066-5 van Hees, 2006, Oxalate and ferricrocin exudation by the extrametrical mycelium of an ectomycorrhizal fungus in symbiosis with Pinus sylvestris, New Phytol., 169, 367, 10.1111/j.1469-8137.2005.01600.x Van Herle, 1997, Fabrication and sintering of fine yttria-doped ceria powder, J. Am. Ceram. Soc., 80, 933, 10.1111/j.1151-2916.1997.tb02924.x van Leeuwenhoek, 1675, Microscopical observations, Philos. Trans. R. Soc. Lond., 10, 380 Verrecchia, 1990, Litho-diagenetic implications of the calcium oxalate-carbonate biogeochemical cycle in semiarid calcretes, Nazareth, Israel, Geomicrobiol. J., 8, 87, 10.1080/01490459009377882 Verrecchia, 1990, Do fungi building limestones exist in semi-arid regions?, Naturwissenschaften, 77, 584, 10.1007/BF01133728 Verrecchia, 1993, Role of calcium oxalate biomineralization by fungi in the formation of calcretes: a case study from Nazareth, Israel, J. Sediment. Petrol., 63, 1000 Verrecchia, 2006, The oxalate-carbonate pathway in soil carbon storage: the role of fungi and oxalotrophic bacteria, 289 Viles, 1995, Ecological perspectives on rock surface weathering: towards a conceptual model, Geomorphology, 13, 21, 10.1016/0169-555X(95)00024-Y Vimal, 2014, Synthesis, structural and spectroscopic investigations of nanostructured samarium oxalate crystals, Spectrochim. Acta Part Mol. Biomol. Spectrosc., 122, 624, 10.1016/j.saa.2013.11.080 Wang, 2002, Hydrometallurgical process for recovery of cobalt from zinc plant residue, Hydrometallurgy, 63, 225, 10.1016/S0304-386X(01)00213-4 Warsheid, 2000, Biodeterioration of stone: overview, Int. Biodeterior. Biodegrad., 46, 343, 10.1016/S0964-8305(00)00109-8 Watanabe, 2005, Purification and characterization of NAD-dependent formate dehydrogenase from the white-rot fungus Ceriporiopsis subvermispora and a possible role of the enzyme in oxalate metabolism, Enzyme Microb. Technol., 37, 68, 10.1016/j.enzmictec.2005.01.032 Watanabe, 2008, Cloning of a cDNA encoding a NAD-dependent formate dehydrogenase involved in oxalic acid metabolism from the white-rot fungus Ceriporiopsis subvermispora and its gene expression analysis, FEMS Microbiol. Lett., 279, 64, 10.1111/j.1574-6968.2007.01022.x Watanabe, 2010, Oxalate efflux transporter from the brown rot fungus Fomitopsis palustris, Appl. Environ. Microbiol., 76, 7683, 10.1128/AEM.00829-10 Webster, 2006, Bioremediation of weathered-building stone surfaces, Trends Biotechnol., 24, 255, 10.1016/j.tibtech.2006.04.005 Wei, 2011, A model sheet mineral system to study fungal bioweathering of mica, Geomicrobiol. J., 29, 323, 10.1080/01490451.2011.558567 Wei, 2012, Biotransformation of manganese oxides by fungi: solubilization and production of manganese oxalate biominerals, Environ. Microbiol., 14, 1744, 10.1111/j.1462-2920.2012.02776.x Wei, 2013, Fungal biotransformation of zinc silicate and sulfide mineral ores, Environ. Microbiol., 15, 2173, 10.1111/1462-2920.12089 Whitney, 1987, Calcium oxalate crystal morphology and development in Agaricus bisporus, Mycologia, 79, 180, 10.2307/3807650 Whitney, 1988, The effect of calcium on mycelial growth and calcium oxalate crystal formation in Gilbertella persicaria (Mucorales), Mycologia, 80, 707, 10.2307/3807722 Wilson, 1995, Interactions between lichens and rocks, Cryptogam. Bot., 5, 299 Wilson, 1983, Lichen weathering of minerals: implications for pedogenesis, 2 Wilson, 1984, The occurrence and significance of manganese oxalate in Pertusaria corallina (lichens), Pedobiologia, 26, 373, 10.1016/S0031-4056(23)05990-5 Wilson, 1980, Glushinskite, a naturally occurring magnesium oxalate, Mineral. Mag., 43, 837, 10.1180/minmag.1980.043.331.02 Wu, 2006, Metal extraction from municipal solid waste incinerator fly ash – chemical leaching and fungal bioleaching, Enzyme Microb. Technol., 38, 839, 10.1016/j.enzmictec.2005.08.012 Xiong, 2013, Experimental determination of solubilities of lead oxalate (PbC2O4(cr)) in a NaCl medium to high ionic strengths, and the importance of lead oxalate in low temperature environments, Chem. Geol., 342, 128, 10.1016/j.chemgeo.2013.01.012 Xu, 2009, Fungal bioleaching of incineration fly ash: metal extraction and modeling growth kinetics, Enzyme Microb. Technol., 44, 323, 10.1016/j.enzmictec.2009.01.006 Yang, 1993, Calcium oxalate crystal formation in Rhizoctonia solani AG 2-1 culture and infected crucifer tissue: relationship between host calcium and resistance, Mycol. Res., 97, 1516, 10.1016/S0953-7562(09)80227-X Zhang, 2008, Optical and electrochemical properties of nanosized CuO via thermal decomposition of copper oxalate, Solid-State Electron., 52, 245, 10.1016/j.sse.2007.08.009 Zhang, 2012, Batch-to-batch control of particle size distribution in cobalt oxalate synthesis process based on hybrid model, Powder Technol., 224, 253, 10.1016/j.powtec.2012.03.001 Zhdanova, 2000, Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor, Mycol. Res., 104, 1421, 10.1017/S0953756200002756 Zhu, 2010, Induction of an oxalate decarboxylase in the filamentous fungus Trametes versicolor by addition of inorganic acids, Appl. Biochem. Biotechnol., 160, 655, 10.1007/s12010-009-8571-6