Linking bacterial community structure to carbon fluxes in marine environments

Journal of Oceanography - Tập 66 - Trang 1-12 - 2010
Taichi Yokokawa1, Toshi Nagata2
1Department of Biological Oceanography, Royal Netherlands Institute for Sea Research (NIOZ), Den Brug, The Netherlands
2Marine Biogeochemistry Group, Ocean Research Institute, The University of Tokyo, Tokyo, Japan

Tóm tắt

Microbial oceanography is undergoing a dramatic revolution thanks to the rapid development of novel techniques that allow the examination of microbial diversity and functions via molecular methods, including genomic and metagenomic analyses. During the past decade, studies have revealed previously unknown and surprisingly diverse bacterial communities in marine waters. These studies have radically changed our understanding of spatiotemporal patterns in marine bacterial community composition and the distribution of specific genes. However, our knowledge of the role of individual bacterial subgroups in oceanic food webs and biogeochemical cycles remains limited. To embed the internal dynamics of bacterial communities into marine biogeochemistry models, the characteristic parameters of individual bacterial subgroups (i.e., growth, mortality, and utilization of dissolved organic matter) must be determined. Here, we survey the approaches used to assess variation in and factors controlling bacterial communities in marine environments, emphasizing the importance of quantitative studies that examine growth and grazing parameters of bacterial subgroups.

Tài liệu tham khảo

Ahlgren, N. A., G. Rocap and S. W. Chisholm (2006): Measurement of Prochlorococcus ecotypes using real-time polymerase chain reaction reveals different abundances of genotypes with similar light physiologies. Environ. Microbiol., 8, 441–454. Alonso-Saez, L. and J. M. Gasol (2007): Seasonal variations in the contributions of different bacterial groups to the uptake of low-molecular-weight compounds in northwestern Mediterranean coastal waters. Appl. Environ. Microbiol., 73, 3528–3535. Amann, R. and B. M. Fuchs (2008): Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nature Rev. Microbiol., 6, 339–348. Azam, F. and A. Z. Worden (2004): Microbes, molecules, and marine ecosystems. Science, 303, 1622–1624. Behrens, S., T. Lösekann, J. Pett-Ridge, P. K. Weber, W. O. Ng, B. S. Stevenson, I. D. Hutcheon, D. A. Relman and A. M. Spormann (2008): Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl. Environ. Microbiol., 74, 3143–3150. Béjà, O. and M. T. Suzuki (2008): Photoheterotrophic marine prokaryotes. p. 131–157. In Microbial Ecology of the Oceans, 2nd ed., ed. by D. L. Kirchman, Wiley-Blackwell, New Jersey. Béjà, O., E. V. Koonin and M. T. Suzuki (2000): Bacterial rhodopsin: Evidence for a new type of phototrophy in the sea. Science, 289, 1902–1906. Benson, D. A., I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, B. A. Rapp and D. L. Wheeler (2002): GenBank. Nucleic Acids Res., 30, 17–20. Bouvier, T. C. and P. A. del Giorgio (2002): Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries. Limnol. Oceanogr., 47, 453–470. Bouvier, T. and P. A. del Giorgio (2007): Key role of selective viral-induced mortality in determining marine bacterial community composition. Environ. Microbiol., 9, 287–297. Breitbart, M., M. Middelboe and F. Rohwer (2008): Marine viruses: community dynamics, diversity and impact on microbial processes. p. 443–479. In Microbial Ecology of the Oceans, 2nd ed., ed. by D. L. Kirchman, Wiley-Blackwell, New Jersey. Brown, M. V., M. S. Schwalbach, I. Hewson and J. A. Fuhrman (2005): Coupling 16S-ITS rDNA clone libraries and automated ribosomal intergenic spacer analysis to show marine microbial diversity: development and application to a time series. Environ. Microbiol., 7, 1466–1479. Church, M. J. (2008): Resource control of bacterial dynamics in the sea. p. 335–382. In Microbial Ecology of the Oceans, 2nd ed., ed. by D. L. Kirchman, Wiley-Blackwell, New Jersey. Church, M. J., E. F. DeLong, H. W. Ducklow, M. B. Karner, C. M. Preston and D. M. Karl (2003): Abundance and distribution of planktonic Archaea and Bacteria in the waters west of the Antarctic Peninsula. Limnol. Oceanogr., 48, 1893–1902. Cohan, F. M. (2002): What are bacterial species? Annu. Rev. Microbiol., 56, 457–487. Cottrell, M. T. and D. L. Kirchman (2000): Natural assemblages of marine proteobacteria and members of the Cytophaga- Flavobacter cluster consuming low- and high-molecularweight dissolved organic matter. Appl. Environ. Microbiol., 66, 1692–1697. Cottrell, M. T. and D. L. Kirchman (2003): Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary. Limnol. Oceanogr., 48, 168–178. Cottrell, M. T. and D. L. Kirchman (2004): Single-cell analysis of bacterial growth, cell size, and community structure in the Delaware estuary. Aquat. Microb. Ecol., 34, 139–149. DeLong, E. F. (1992): Archaea in coastal marine environments. Proc. Nat. Acad. Sci. USA, 89, 5685–5689. DeLong, E. F. (2009): The microbial ocean from genomes to biomes. Nature, 459, 200–206. DeLong, E. F. and D. M. Karl (2005): Genomic perspectives in microbial oceanography. Nature, 437, 336–342. DeLong, E. F., C. M. Preston, T. Mincer, V. Rich, S. J. Hallam, N. U. Frigaard, A. Martinez, M. B. Sullivan, R. Edwards, B. R. Brito, S. W. Chisholm and D. M. Karl (2006): Community genomics among stratified microbial assemblages in the ocean’s interior. Science, 311, 496–503. Dinsdale, E. A., R. A. Edwards, D. Hall, F. Angly, M. Breitbart, J. M. Brulc, M. Furlan, C. Desnues, M. Haynes, L. Li, L. McDaniel, M. A. Moran, K. E. Nelson, C. Nilsson, R. Olson, J. Paul, B. R. Brito, Y. Ruan, B. K. Swan, R. Stevens, D. L. Valentine, R. V. Thurber, L. Wegley, B. A. White and F. Rohwer (2008): Functional metagenomic profiling of nine biomes. Nature, 452, 629–632. Ducklow, H. W. (2000): Bacterial production and biomass in the oceans. p. 85–120. In Microbial Ecology of the Oceans, 1st ed., ed. by D. L. Kirchman, Wiley-Liss, New York. Follows, M. J., S Dutkiewicz, S. Grant and S. W. Chisholm (2007): Emergent biogeography of microbial communities in a model ocean. Nature, 315, 1843–1846. Fuhrman, J. A. (1999): Marine viruses and their biogeochemical and ecological effects. Nature, 399, 541–548. Fuhrman, J. A. (2009): Microbial community structure and its functional implications. Nature, 459, 193–199. Fuhrman J. A. and Å. Hagström (2008). Bacterial and Archaeal community structure and its patterns. p. 45–90. In Microbial Ecology of the Oceans, 2nd ed., ed. by D. L. Kirchman, Wiley-Blackwell, New Jersey. Fuhrman, J. A., K. McCallum and A. A. Davis (1992): Novel major archaebacterial group from marine plankton. Nature, 356, 148–149. Fukuda, R., H. Ogawa, T. Nagata and I. Koike (1998): Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl. Environ. Microbiol., 64, 3352–3358. Giovannoni, S. J. and U. Stingl (2005): Molecular diversity and ecology of microbial plankton. Nature, 437, 343–348. Giovannoni, S. J. and U. Stingl (2007): The importance of culturing bacterioplankton in the “omics”age. Natl. Rev. Microbiol., 5, 820–826. Giovannoni, S. J., T. B. Britschgi, C. L. Moyer and K. G. Field (1990): Genetic diversity in Sargasso Sea bacterioplankton. Nature, 345, 60–63. Giovannoni, S. J., H. J. Tripp, S. Givan, M. Podar, K. L. Vergin, D. Baptista, L. Bibbs, J. Eads, T. H. Richardson, M. Noordewier, M. S. Rappé, J. M. Short, J. C. Carrington and E. J. Mathur (2005): Genome streamlining in a cosmopolitan oceanic bacterium. Science, 309, 1242–1245. Glöckner, F. O., B. M. Fuchs and R. Amann (1999): Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol., 65, 3721–3726. González, J. M. and M. A. Moran (1997): Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. Appl. Environ. Microbiol., 63, 4237–4242. Grossart, H. P., F. Levold, M. Allgaier, M. Simon and T. Brinkhoff (2005): Marine diatom species harbour distinct bacterial communities. Environ. Microbiol., 7, 860–873. Hamasaki, K., R. A. Long and F. Azam (2004): Individual cell growth rates of marine bacteria, measured by bromodeoxyuridine incorporation. Aquat. Microb. Ecol., 35, 217–227. Hobbie, J. E., R. J. Daley and S. Jasper (1977): Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol., 33, 1225–1228. Huang, W. E., K. Stoecker, R. Griffiths, L. Newbold, H. Daims, A. S. Whiteley and M. Wagner (2007): Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ. Microbiol., 9, 1878–1889. Johnson, Z. I., E. R. Zinser, A. Coe, N. P. McNulty, E. M. Woodward and S. W. Chisholm (2006): Niche partitioning among Prochloroccus ecotyps along ocean-scale environmental gradients. Science, 311, 1737–1740. Jürgens, K. and R. Massana (2008): Protistan grazing on marine bacterioplankton. p. 383–441. In Microbial Ecology of the Oceans, 2nd ed., ed. by D. L. Kirchman, Wiley- Blackwell, New Jersey. Karner, M. B., E. F. DeLong and D. M. Karl (2001): Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 409, 507–510. Kenzaka, T., S. Takami, N. Yamaguchi, K. Tani and M. Nasu (2005): Recognition of individual genes in diverse microorganisms by cycling primed in situ amplification. Appl. Environ. Microbiol., 71, 7236–7244. Kirchman, D. L. (2000): Uptake and regulation of inorganic nutrients by marine heterotrophic bacteria. p. 261–288. In Microbial Ecology of the Oceans, 1st ed., ed. by D. L. Kirchman, Wiley-Liss, New York. Kirchman, D. L., A. I. Dittel, R. R. Malmstrom and M. T. Cottrell (2005): Biogeography of major bacterial groups in the Delaware Estuary. Limnol. Oceanogr., 50, 1697–1706. Kirchman, D. L., H. Elifantz, A. I. Dittel, R. R. Malmstrom and M. T. Cottrell (2007): Standing stocks and activity of Archaea and Bacteria in the western Arctic Ocean. Limnol. Oceanogr., 52, 495–507. Kogure, K., U. Simidu and N. Taga (1979): Tentative direct microscopic method for counting living marine-bacteria. Can. J. Microbiol., 25, 415–420. Lebaron, P., P. Servais, M. Troussellier, C. Courties, G. Muyzer, L. Bernard, H. Schafer, R. Pukall, E. Stackebrandt, T. Guindulain and J. Vives-Rego (2001): Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: changes in abundances, activity and composition. FEMS Microbiol. Ecol., 34, 255–266. Madigan, M. T., J. M. Martinko and J. Parker (2000): Brock Biology of Microorganisms. Ninth ed., Prentice-Hall, New York. Malmstrom, R. R., M. T. Cottrell, H. Elifantz and D. L. Kirchman (2005): Biomass production and assimilation of dissolved organic matter by SAR11 bacteria in the Northwest Atlantic Ocean. Appl. Environ. Microbiol., 71, 2979–2986. Maruyama, F., T. Kenzaka, N. Yamaguchi, K. Tani and M. Nasu (2005): Visualization and enumeration of bacteria carrying a specific gene sequence by in situ rolling circle amplification. Appl. Environ. Microbiol., 71, 7933–7940. Middelboe, M. (2000): Bacterial growth rate and marine virushost dynamics. Microb. Ecol., 40, 114–124. Miki, T., T. Nakazawa, T. Yokokawa and T. Nagata (2008a): Functional consequences of viral impacts on bacterial communities: a food-web model analysis. Freshwater Biol., 53, 1142–1153. Miki, T., T. Yokokawa, T. Nagata and N. Yamamura (2008b): Immigration of prokaryotes to local environments enhances remineralization efficiency of sinking particles: a metacommunity model. Mar. Ecol. Prog. Ser., 366, 1–14. Miki, T., L. Giuggioli, Y. Kobayashi, T. Nagata and S. A. Levin (2009): Vertically structured prokaryotic community can control the efficiency of the biological pump in the oceans. Theor. Ecol., doi:10.1007/s12080-009-0042-8. Moran, M. A. (2008): Genomics and metagenomics of marine prokaryotes. p. 91–129. In Microbial Ecology of the Oceans, 2nd ed., ed. by D. L. Kirchman, Wiley-Blackwell, New Jersey. Morris, R. M., M. S. Rappe, S. A. Connon, K. L. Vergin, W. A. Siebold, C. A. Carlson and S. J. Giovannoni (2002): SAR11 clade dominates ocean surface bacterioplankton communities. Nature, 420, 806–810. Motegi, C. and T. Nagata (2007): Enhancement of viral production by addition of nitrogen or nitrogen plus carbon in subtropical surface waters of the South Pacific. Aquat. Microb. Ecol., 48, 27–34. Motegi, C., T. Nagata, T. Miki, M. C. Weinbauer, L. Legendre and F. Rassoulzadegan (2009): Viral control of bacterial growth efficiency in marine pelagic environments. Limnol. Oceanogr., 54, 1901–1910. Nagata, T. (2008): Organic matter-bacteria interactions in seawater. p. 207–241. In Microbial Ecology of the Oceans, 2nd ed., ed. by D. L. Kirchman, Wiley-Blackwell, New Jersey. Nagata, T., R. Fukuda, H. Fukuda and I. Koike (2001): Basinscale geographic patterns of bacterioplankton biomass and production in the subarctic Pacific, July-September 1997. J. Oceanogr., 57, 301–313. Nishimura, Y. and T. Nagata (2007): Alphaproteobacterial dominance in a large mesotrophic lake (Lake Biwa, Japan). Aquat. Microb. Ecol., 49, 231–240. Nocker, A., M. Burr and A. K. Camper (2007): Genotypic microbial community profiling: A critical technical review. Microb. Ecol., 54, 276–289. Norland, S., M. Heldal and O. Tumyr (1987): On the relation between dry-matter and volume of bacteria. Microb. Ecol., 13, 95–101. Pace, N. R. (1997): A molecular view of microbial diversity and the biosphere. Science, 276, 734–740. Pernthaler, J. (2005): Predation on prokaryotes in the water column and its ecological implications. Natl. Rev. Microbiol., 3, 537–546. Pernthaler, J., A. Alfreider, T. Posch, S. Andreatta and R. Psenner (1997): In situ classification and image cytometry of pelagic bacteria from a high mountain lake (Gossenkollesee, Austria). Appl. Environ. Microbiol., 63, 4778–4783. Pommier, T., B. Canbäck, L. Riemann, K. H. Boström, K. Simu, P. Lundberg, A. Tunlid and Å. Hagström (2007): Global patterns of diversity and community structure in marine bacterioplankton. Mol. Ecol., 16, 867–880. Posch, T., J. Franzoi, M. Prader and M. M. Salcher (2009): New image analysis tool to study biomass and morphotypes of three major bacterioplankton groups in an alpine lake. Aquat. Microb. Ecol., 54, 113–126. Rappé, M. S., S. A. Connon, K. L. Vergin and S. J. Giovannoni (2002): Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature, 418, 630–633. Selje, N. and M. Simon (2003): Composition and dynamics of particle-associated and free-living bacterial communities in the Weser estuary, Germany. Aquat. Microb. Ecol., 30, 221–237. Selje, N., M. Simon and T. Brinkhoff (2004): A newly discovered Roseobacter cluster in temperate and polar oceans. Nature, 427, 445–448. Simon, M., H. P. Grossart, B. Schweitzer and H. Ploug (2002): Microbial ecology of organic aggregates in aquatic systems. Aquat. Microb. Ecol., 28, 175–211. Sogin, M. L., H. G. Morrison, J. A. Huber, D. M. Welch, S. M. Huse, P. R. Neal, J. M. Arrieta and G. J. Herndl (2006): Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci., 103, 12115–12120. Stahl, D. A., B. Flesher, H. R. Mansfield and L. Montgomery (1988): Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol., 54, 1079–1084. Suzuki, M. T. and E. F. DeLong (2002): Marine prokaryote diversity. p. 209–234. In Biodiversity of Microbial Life, ed. by J. T. Staley and A. L. Reysenbach, Wiley-Liss, New York. Suzuki, M. T. and S. J. Giovannoni (1996): Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol., 62, 625–630. Suzuki, M. T., C. M. Preston, F. P. Chavez and E. F. DeLong (2001): Quantitative mapping of bacterioplankton populations in seawater: field tests across an upwelling plume in Monterey Bay. Aquat. Microb. Ecol., 24, 117–127. Teira, E., T. Reinthaler, A. Pernthaler, J. Pernthaler and G. J. Herndl (2004): Combining catalyzed reporter depositionfluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and archaea in the deep ocean. Appl. Environ. Microbiol., 70, 4411–4414. Teira, E., H. van Aken, C. Veth and G. J. Herndl (2006): Archaeal uptake of enantiomeric amino acids in the mesoand bathypelagic waters of the North Atlantic. Limnol. Oceanogr., 51, 60–69. Thingstad, T. F. (2000): Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol. Oceanogr., 45, 1320–1328. Thingstad, T. F. and R Lignell (1997): Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol., 13, 19–27. Varela, M. M., H. M. van Aken and G. J. Herndl (2008): Abundance and activity of Chloroflexi-type SAR202 bacterioplankton in the meso- and bathypelagic waters of the (sub) tropical Atlantic. Environ. Microbiol., 10, 1903–1911. Venter, J. C., K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen, D. Wu, I. Paulse, K. E. Nelson, W. Nelson, D. E. Fouts, S. Levy, A. H. Knap, M. W. Lomas, K. Nealson, O. White, J. Peterson, J. Hpffma, R. Parsons, H. Baden-Tillson, C. Pfannkoch, Y.-H. Rogers and H. O. Smith (2004): Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304, 66–74. Warnecke, F., R. Sommaruga, R. Sekar, J. S. Hofer and J. Pernthaler (2005): Abundances, identity, and growth state of actinobacteria in mountain lakes of different UV transparency. Appl. Environ. Microbiol., 71, 5551–5559. Woese, C. R. (1987): Bacterial evolution. Microbiol. Rev., 51, 221–271. Yokokawa, T. (2004): Growth and grazing mortality of phylogenetically distinct bacterial groups in estuarine and coastal marine environments. Ph.D. thesis, Kyoto University, Japan. Yokokawa, T. and T. Nagata (2005): Growth and grazing mortality rates of phylogenetic groups of bacterioplankton in coastal marine environments. Appl. Environ. Microbiol., 71, 6799–6807. Yokokawa, T., T. Nagata, M. T. Cottrell and D. L. Kirchman (2004): Growth rate of the major phylogenetic bacterial groups in the Delaware estuary. Limnol. Oceanogr., 49, 1620–1629. Zhang, Y., N. Z. Jiao, M. T. Cottrell and D. L. Kirchman (2006): Contribution of major bacterial groups to bacterial biomass production along a salinity gradient in the South China Sea. Aquat. Microb. Ecol., 43, 233–241. Zubkov, M. V., B. M. Fuchs, P. H. Burkill and R. Amann (2001): Comparison of cellular and biomass specific activities of dominant bacterioplankton groups in stratified waters of the Celtic Sea. Appl. Environ. Microbiol., 67, 5210–5218. Zwirglmaier, K., W. Ludwig and K. H. Schleifer (2004): Recognition of individual genes in a single bacterial cell by fluorescence in situ hybridization — RING-FISH. Mol. Microbiol., 51, 89–96.