Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: A lattice Boltzmann model for large density and viscosity ratios

Journal of Computational Physics - Tập 334 - Trang 620-638 - 2017
Abbas Fakhari1, Diogo Bolster1
1Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Morris, 2016, 391

Shikhmurzaev, 2008

Prosperetti, 2009

Rowlinson, 1989

Jacqmin, 1999, Calculation of two-phase Navier–Stokes flows using phase-field modeling, J. Comput. Phys., 155, 96, 10.1006/jcph.1999.6332

Jacqmin, 2000, Contact-line dynamics of a diffuse fluid interface, J. Fluid Mech., 402, 57, 10.1017/S0022112099006874

Jamet, 2001, The second gradient method for the direct numerical simulation of liquid–vapor flows with phase change, J. Comput. Phys., 169, 624, 10.1006/jcph.2000.6692

Pismen, 2001, Nonlocal diffuse interface theory of thin films and the moving contact line, Phys. Rev. E, 64, 10.1103/PhysRevE.64.021603

Magaletti, 2013, The sharp-interface limit of the Cahn–Hilliard/Navier–Stokes model for binary fluids, J. Fluid Mech., 714, 95, 10.1017/jfm.2012.461

Cahn, 1958, Free energy of a nonuniform system, I: interfacial free energy, J. Chem. Phys., 28, 258, 10.1063/1.1744102

Sun, 2007, Sharp interface tracking using the phase-field equation, J. Comput. Phys., 220, 626, 10.1016/j.jcp.2006.05.025

Chiu, 2011, A conservative phase field method for solving incompressible two-phase flows, J. Comput. Phys., 230, 185, 10.1016/j.jcp.2010.09.021

Ding, 2007, Diffuse interface model for incompressible two-phase flows with large density ratios, J. Comput. Phys., 226, 2078, 10.1016/j.jcp.2007.06.028

He, 1997, A priori derivation of the lattice Boltzmann equation, Phys. Rev. E, 55, R6333, 10.1103/PhysRevE.55.R6333

He, 1997, Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, 56, 6811, 10.1103/PhysRevE.56.6811

He, 2002, Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows, J. Stat. Phys., 107, 309, 10.1023/A:1014527108336

Yu, 2003, Viscous flow computations with the method of lattice Boltzmann equation, Prog. Aerosp. Sci., 39, 329, 10.1016/S0376-0421(03)00003-4

Sukop, 2006

Huang, 2015

Gunstensen, 1991, Lattice Boltzmann model of immiscible fluids, Phys. Rev. A, 43, 4320, 10.1103/PhysRevA.43.4320

Grunau, 1993, A lattice Boltzmann model for multiphase fluid flows, Phys. Fluids A, 5, 2557, 10.1063/1.858769

Shan, 1993, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E, 47, 1815, 10.1103/PhysRevE.47.1815

Shan, 1994, Simulation of nonideal gases and liquid–gas phase transitions by the lattice Boltzmann equation, Phys. Rev. E, 49, 2941, 10.1103/PhysRevE.49.2941

Shan, 1995, Multicomponent lattice-Boltzmann model with interparticle interaction, J. Stat. Phys., 81, 379, 10.1007/BF02179985

Shan, 1996, Diffusion in a multicomponent lattice Boltzmann equation model, Phys. Rev. E, 54, 3614, 10.1103/PhysRevE.54.3614

Swift, 1995, Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. Lett., 75, 830, 10.1103/PhysRevLett.75.830

Orlandini, 1995, A lattice Boltzmann model of binary-fluid mixtures, Europhys. Lett., 32, 463, 10.1209/0295-5075/32/6/001

Swift, 1996, Lattice Boltzmann simulations of liquid–gas and binary fluid systems, Phys. Rev. E, 54, 5041, 10.1103/PhysRevE.54.5041

He, 1998, A discrete Boltzmann equation model for non-ideal gases, Phys. Rev. E, 57, 10.1103/PhysRevE.57.R13

He, 1999, A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability, J. Comput. Phys., 152, 642, 10.1006/jcph.1999.6257

Inamuro, 2004, A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput. Phys., 198, 628, 10.1016/j.jcp.2004.01.019

Lee, 2005, A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio, J. Comput. Phys., 206, 16, 10.1016/j.jcp.2004.12.001

Li, 2013, Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model, Phys. Rev. E, 87, 10.1103/PhysRevE.87.053301

Leclaire, 2016, Modeling of static contact angles with curved boundaries using a multiphase lattice Boltzmann method with variable density and viscosity ratios, Int, J. Numer. Methods Fluids, 82, 451, 10.1002/fld.4226

Chiappini, 2010, Improved lattice Boltzmann without parasitic currents for Rayleigh–Taylor instability, Commun. Comput. Phys., 7, 423, 10.4208/cicp.2009.09.018

Lee, 2010, Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces, J. Comput. Phys., 229, 8045, 10.1016/j.jcp.2010.07.007

Zheng, 2006, A lattice Boltzmann model for multiphase flows with large density ratio, J. Comput. Phys., 218, 353, 10.1016/j.jcp.2006.02.015

Fakhari, 2010, Phase-field modeling by the method of lattice Boltzmann equations, Phys. Rev. E, 81, 10.1103/PhysRevE.81.036707

Fakhari, 2013, Multiple-relaxation-time lattice Boltzmann method for immiscible fluids at high Reynolds numbers, Phys. Rev. E, 87, 10.1103/PhysRevE.87.023304

Guo, 2011, Force imbalance in lattice Boltzmann equation for two-phase flows, Phys. Rev. E, 83, 10.1103/PhysRevE.83.036707

Fakhari, 2016, A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows, J. Comput. Phys., 315, 434, 10.1016/j.jcp.2016.03.058

Liu, 2015, A diffuse-interface immersed-boundary method for two-dimensional simulation of flows with moving contact lines on curved substrates, J. Comput. Phys., 294, 484, 10.1016/j.jcp.2015.03.059

Liu, 2012, Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations, Phys. Rev. E, 85

Ba, 2016, Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio, Phys. Rev. E, 94, 10.1103/PhysRevE.94.023310

Leclaire, 2015, An approach to control the spurious currents in a multiphase lattice Boltzmann method and to improve the implementation of initial condition, Int. J. Numer. Methods Fluids, 77, 732, 10.1002/fld.4002

Leclaire, 2016, A multiphase lattice Boltzmann method for simulating immiscible liquid–liquid interface dynamics, Appl. Math. Model., 40, 6376, 10.1016/j.apm.2016.01.049

Liu, 2016, Multiphase lattice Boltzmann simulations for porous media applications, Comput. Geosci., 20, 777, 10.1007/s10596-015-9542-3

Fakhari, 2011, Investigation of deformation and breakup of a falling droplet using a multiple-relaxation-time lattice Boltzmann method, Comput. Fluids, 40, 156, 10.1016/j.compfluid.2010.08.020

Liu, 2013, Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows, Phys. Rev. E, 87, 10.1103/PhysRevE.87.013010

Connington, 2013, Lattice Boltzmann simulations of forced wetting transitions of drops on superhydrophobic surfaces, J. Comput. Phys., 250, 601, 10.1016/j.jcp.2013.05.012

Ding, 2007, Wetting condition in diffuse interface simulations of contact line motion, Phys. Rev. E, 75, 10.1103/PhysRevE.75.046708

Geier, 2015, Conservative phase-field lattice Boltzmann model for interface tracking equation, Phys. Rev. E, 91, 10.1103/PhysRevE.91.063309

Lallemand, 2000, Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, 61, 6546, 10.1103/PhysRevE.61.6546

Kumar, 2004, Isotropic finite-differences, J. Comput. Phys., 201, 109, 10.1016/j.jcp.2004.05.005

Filippova, 1998, Grid refinement for lattice-BGK models, J. Comput. Phys., 147, 219, 10.1006/jcph.1998.6089

Mei, 1999, An accurate curved boundary treatment in the lattice Boltzmann method, J. Comput. Phys., 155, 307, 10.1006/jcph.1999.6334

Bouzidi, 2001, Momentum transfer of a Boltzmann-lattice fluid with boundaries, Phys. Fluids, 13, 3452, 10.1063/1.1399290

Yu, 2003, A unified boundary treatment in lattice Boltzmann method, AIAA J.

Ladd, 1994, Numerical simulations of particulate suspensions via a discretized Boltzmann equation, part 1: theoretical foundation, J. Fluid Mech., 271, 285, 10.1017/S0022112094001771

Tritton, 1959, Experiments on the flow past a circular cylinder at low Reynolds numbers, J. Fluid Mech., 6, 547, 10.1017/S0022112059000829

Berger, 1972, Periodic flow phenomena, Annu. Rev. Fluid Mech., 4, 313, 10.1146/annurev.fl.04.010172.001525

Braza, 1986, Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder, J. Fluid Mech., 165, 79, 10.1017/S0022112086003014

Williamson, 1988, Defining a universal and continuous Strouhal–Reynolds number relationship for the laminar vortex shedding of a circular cylinder, Phys. Fluids, 31, 2742, 10.1063/1.866978

Williamson, 1996, Vortex dynamics in the cylinder wake, Annu. Rev. Fluid Mech., 28, 477, 10.1146/annurev.fl.28.010196.002401

He, 1997, Lattice Boltzmann method on a curvilinear coordinate system: vortex shedding behind a circular cylinder, Phys. Rev. E, 56, 434, 10.1103/PhysRevE.56.434

Liu, 1998, Preconditioned multigrid methods for unsteady incompressible flows, J. Comput. Phys., 139, 35, 10.1006/jcph.1997.5859

Calhoun, 2002, A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions, J. Comput. Phys., 176, 231, 10.1006/jcph.2001.6970

Haddadi, 2016, Lattice–Boltzmann simulation of inertial particle-laden flow around an obstacle, Phys. Rev. Fluids, 1, 10.1103/PhysRevFluids.1.024201

Zu, 1997, On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. Fluids, 9, 1591, 10.1063/1.869307

He, 1997, Lattice Boltzmann model for the incompressible Navier–Stokes equation, J. Stat. Phys., 88, 927, 10.1023/B:JOSS.0000015179.12689.e4

Mei, 2002, Force evaluation in the lattice Boltzmann method involving curved geometry, Phys. Rev. E, 65, 10.1103/PhysRevE.65.041203

Richter, 2010, Simulations of three-dimensional viscoelastic flows past a circular cylinder at moderate Reynolds numbers, J. Fluid Mech., 651, 415, 10.1017/S0022112009994083

Hung, 1999, Experimental investigation of the impaction of water droplets on cylindrical objects, Int. J. Multiph. Flow, 25, 1545, 10.1016/S0301-9322(98)00085-8

Hardalupas, 1999, Experimental investigation of submillimetre droplet impingement on to spherical surfaces, Int. J. Heat Fluid Flow, 20, 477, 10.1016/S0142-727X(99)00045-4

Bakshi, 2007, Investigations on the impact of a drop onto a small spherical target, Phys. Fluids, 19, 10.1063/1.2716065

Liang, 2013, Special phenomena from a single liquid drop impact on wetted cylindrical surfaces, Exp. Therm. Fluid Sci., 51, 18, 10.1016/j.expthermflusci.2013.06.012

Zhang, 2014, Application of a high density ratio lattice-Boltzmann model for the droplet impingement on flat and spherical surfaces, Int. J. Therm. Sci., 84, 75, 10.1016/j.ijthermalsci.2014.05.002

Yarin, 2006, Drop impact dynamics: splashing, spreading, receding, bouncing, Annu. Rev. Fluid Mech., 38, 159, 10.1146/annurev.fluid.38.050304.092144

Yue, 2010, Sharp-interface limit of the Cahn–Hilliard model for moving contact lines, J. Fluid Mech., 645, 279, 10.1017/S0022112009992679