Sound velocity mapping from GHz Brillouin oscillations in transparent materials by optical incidence from the side of the sample

Photoacoustics - Tập 30 - Trang 100459 - 2023
Motonobu Tomoda1, Akira Toda1, Osamu Matsuda1, Vitalyi E. Gusev2, Oliver B. Wright3,4
1Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
2Laboratoire d′Acoustique de l′Université du Mans (LAUM), Institut d′Acoustique-Graduate School (IA-GS), CNRS, Le Mans Université, Le Mans 72085, France
3Hokkaido University, Sapporo 060-0808, Japan
4Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Osaka, Japan

Tài liệu tham khảo

Thomsen, 1986, Surface generation and detection of phonons by picosecond light pulses, Phys. Rev. B, 34, 4129, 10.1103/PhysRevB.34.4129 Matsuda, 2015, Fundamentals of picosecond laser ultrasonics, Ultrasonics, 56, 3, 10.1016/j.ultras.2014.06.005 Tachizaki, 2006, Scanning ultrafast Sagnac interferometry for imaging two-dimensional surface wave propagation, Rev. Sci. Instrum., 77, 10.1063/1.2194518 Lin, 1991, Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry, J. Appl. Phys., 69, 3816, 10.1063/1.348958 Wright, 1991, Ultrafast vibration and laser acoustics in thin transparent films, Opt. Lett., 16, 1529, 10.1364/OL.16.001529 Wright, 1995, Laser picosecond acoustics in double-layer transparent films, Opt. Lett., 20, 632, 10.1364/OL.20.000632 Kashiwada, 2006, In situ monitoring of the growth of ice films by laser picosecond acoustics, J. Appl. Phys., 100, 10.1063/1.2353125 Rossignol, 2008, In vitro picosecond ultrasonics in a single cell, Appl. Phys. Lett., 93, 10.1063/1.2988470 Audoin, 2010, Picosecond acoustics in vegetal cells: non-invasive in vitro measurements at a sub-cell scale, Ultrasonics, 50, 202, 10.1016/j.ultras.2009.09.019 Lomonosov, 2012, Nanoscale noncontact subsurface investigations of mechanical and optical properties of nanoporous low-k material thin film, ACS Nano, 6, 1410, 10.1021/nn204210u Nikitin, 2015, Revealing sub-µm and µm-scale textures in H2O ice at megabar pressures by time-domain Brillouin scattering, Sci. Rep., 5, 09352, 10.1038/srep09352 Dehoux, 2016, Optical tracking of picosecond coherent phonon pulse focusing inside a sub-micron object, Light Sci. Appl., 5, 10.1038/lsa.2016.82 Matsuda, 2018, Time-domain Brillouin scattering assisted by diffraction gratings, Phys. Rev. B, 97, 10.1103/PhysRevB.97.064301 Matsuda, 2020, Optical generation and detection of gigahertz shear acoustic waves in solids assisted by a metallic diffraction grating, Phys. Rev. B, 101, 10.1103/PhysRevB.101.224307 Mechri, 2009, Depth-profiling of elastic inhomogeneities in transparent nanoporous low-k materials by picosecond ultrasonic interferometry, Appl. Phys. Lett., 95, 10.1063/1.3220063 Gusev, 2011, Depth-profiling of elastic and optical inhomogeneities in transparent materials by picosecond ultrasonic interferometry: theory, J. Appl. Phys., 110, 10.1063/1.3665646 Danworaphong, 2015, Three-dimensional imaging of biological cells with picosecond ultrasonics, Appl. Phys. Lett., 106, 10.1063/1.4918275 Pérez-Cota, 2016, High resolution 3D imaging of living cells with sub-optical wavelength phonons, Sci. Rep., 6, 1, 10.1038/srep39326 Ghanem, 2018, Opto-acoustic microscopy reveals adhesion mechanics of single cells, Rev. Sci. Instrum., 89 Pérez-Cota, 2020, Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells, J. Appl. Phys., 128, 10.1063/5.0023744 La Cavera, 2021, Phonon imaging in 3D with a fibre probe, Light Sci. Appl., 10, 1, 10.1038/s41377-021-00532-7 Gusev, 2018, Advances in applications of time-domain Brillouin scattering for nanoscale imaging, Appl. Phys. Rev., 5, 10.1063/1.5017241 Tomoda, 2007, Tomographic reconstruction of picosecond acoustic strain propagation, Appl. Phys. Lett., 90, 10.1063/1.2432238 Polian, 2003, Brillouin scattering at high pressure: an overview, J. Raman Spectrosc., 34, 633, 10.1002/jrs.1031 Lin, 1992, Nondestructive detection of titanium disilicide phase transformation by picosecond ultrasonics, Appl. Phys. Lett., 61, 2700, 10.1063/1.108114 2004, CRC Handbook of Chemistry and Physics Gusev, 2020, Contra-intuitive features of time-domain Brillouin scattering in collinear paraxial sound and light beams, Photoacoustics, 20, 10.1016/j.pacs.2020.100205 V.E. Gusev, T. Thréard, D.H. Hurley, S. Raetz, Theory of time-domain Brillouin scattering for probe light and acoustic beams propagating at an arbitrary relative angle: Application to acousto-optic interaction near material interfaces (2021). URL https://arxiv.org/abs/2107.05294.