Hair removal methods: A comparative study for dermoscopy images
Tài liệu tham khảo
Sneyd, 2009, Melanoma in Maori, Asian and Pacific peoples in New Zealand, Cancer Epidemiol. Biomarkers Prev., 18, 1706, 10.1158/1055-9965.EPI-08-0682
Celebi, 2008, Lesion border detection in dermoscopy Images, Comput. Med. Imag. Grap., 33, 148, 10.1016/j.compmedimag.2008.11.002
Argenziano, 2003, Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet, J. Am. Acad. Dermatol., 48, 679, 10.1067/mjd.2003.281
Ganster, 2001, Automated melanoma recognition, IEEE Trans. Med. Imaging, 20, 223, 10.1109/42.918473
Johr, 2002, Alternative melanocytic algorithms. The ABCD rule of dermatoscopy, menzies scoring method, and 7-point checklist, Clin. Dermatol., 20, 240, 10.1016/S0738-081X(02)00236-5
Rubegni, 2002, Automated diagnosis of pigmented skin lesions, Int. J. Cancer, 101, 576, 10.1002/ijc.10620
Ercal, 1993, Detection of skin tumor boundaries in color Images, IEEE Trans. Med. Imaging, 12, 624, 10.1109/42.241892
Xu, 1999, Segmentation of skin cancer images, Image Vision Comput., 17, 65, 10.1016/S0262-8856(98)00091-2
Celebi, 2007, A methodological approach to the classification of dermoscopy images, Comput. Med. Imag. Grap., 31, 362, 10.1016/j.compmedimag.2007.01.003
Hoffmann, 2003, Diagnostic and neural analysis of skin cancer (DANAOS). A multicentre study for collection and computer-aided analysis of data from pigmented skin lesions using digital dermoscopy, Br. J. Dermatol., 149, 801, 10.1046/j.1365-2133.2003.05547.x
Abbas, 2010, Automatic skin tumour border detection for digital dermoscopy using a novel digital image analysis scheme, Br. J. Biomed. Sci., 67, 177, 10.1080/09674845.2010.11730316
Abbas, 2010, Unsupervised skin lesions border detection via two-dimensional image analysis, Comput. Meth. Prog. Bio., 10.1016/j.cmpb.2010.06.016
Tang, 2009, A multi-directional GVF snake for the segmentation of skin cancer images, J. Pattern Recogn., 42, 1172, 10.1016/j.patcog.2008.09.007
Erkol, 2005, Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes, Skin Res. Technol., 11, 17, 10.1111/j.1600-0846.2005.00092.x
Iyatomi, 2008, An improved internet-based Melanoma screening system with dermatologist-like tumor area extraction algorithm, Comput. Med. Imag. Grap., 32, 566, 10.1016/j.compmedimag.2008.06.005
Golston, 1990, Boundary detection in skin tumor images: an overall approach and a radial search algorithm, Pattern Recogn., 23, 1235, 10.1016/0031-3203(90)90119-6
Zhang, 2000, Border detection on digitized skin tumor images, IEEE Trans. Med. Imaging, 19, 1128, 10.1109/42.896789
Zhou, 2009, Anisotropic mean shift based fuzzy c-means segmentation of dermoscopy images, IEEE J. Sel. Top. Signa., 3, 26, 10.1109/JSTSP.2008.2010631
GÓMEZ, 2008, Independent histogram pursuit for segmentation of skin lesions, IEEE Trans. Biomed. Eng., 55, 157, 10.1109/TBME.2007.910651
Ercal, 1994, Neural network diagnosis of malignant melanomas from color images, IEEE Trans. Biomed. Eng., 41, 837, 10.1109/10.312091
Grana, 2003, A new algorithm for border description of polarized light surface microscopic images of pigmented skin lesions, IEEE Trans. Med. Imaging, 22, 959, 10.1109/TMI.2003.815901
Tanaka, 2008, Pattern classification of nevus with texture analysis, IEEJ Trans. Electr. Electron. Eng., 3, 143, 10.1002/tee.20246
Iyatomi, 2008, Computer-based classification of dermoscopy images of melanocytic lesions on acral volar skin, J. Invest. Dermatol., 128, 2049, 10.1038/jid.2008.28
Serrano, 2009, Pattern analysis of dermoscopic images based on Markov random fields, J. Pattern Recogn., 42, 1052, 10.1016/j.patcog.2008.07.011
Lee, 1997, Software approach to hair removal from images, J. Comput. Biol. Med., 27, 533, 10.1016/S0010-4825(97)00020-6
Nguyen, 2010, Segmentation of light and dark hair in dermoscopic images: a hybrid approach using a universal kernel, Proc. SPIE Med. Imaging, 1, 10.2217/iim.09.27
Schmid, 1999, Segmentation of digitized dermatoscopic images by two-dimensional color clustering, IEEE Trans. Med. Imaging, 18, 164, 10.1109/42.759124
Saugeona, 2003, Towards a computer-aided diagnosis system for pigmented skin lesions, Comput. Med. Imag. Grap., 27, 65, 10.1016/S0895-6111(02)00048-4
Fleming, 1998, Techniques for a structural analysis of dermatoscopic imagery, Comput. Med. Imag. Grap., 22, 375, 10.1016/S0895-6111(98)00048-2
Chung, 2000, Segmentation skin lesions with partial-differential-equation-based image processing algorithms, IEEE Trans. Med. Imaging, 19, 763, 10.1109/42.875204
Barcelos, 2009, An automatic based nonlinear diffusion equations scheme for skin lesion segmentation, Appl. Math. Comput., 215, 251, 10.1016/j.amc.2009.04.081
Xie, 2009, PDE-based unsupervised repair of hair-occluded information in dermoscopy images of melanoma, Comput. Med. Imag. Grap., 33, 275, 10.1016/j.compmedimag.2009.01.003
Criminisi, 2004, Region filling and object removal by exemplar-based Image inpainting, IEEE Trans. Image Process., 13, 1, 10.1109/TIP.2004.833105
Wighton, 2008, Dermoscopic hair disocclusion using inpainting, 1, 10.1117/12.770776
Zhou, 2008, Feature-preserving artifact removal from dermoscopy images, 1
Bornemann, 2007, Fast image inpainting based on coherence transport, J. Math. Imaging Vis., 28, 259, 10.1007/s10851-007-0017-6
Vezhnevets, 2003, A survey on pixel-based skin color detection techniques, Proc GraphiCon., 85
Garrett, 2003, A top down description of S-CIELAB and CIEDE2000, Color Res. Appl., 28, 425, 10.1002/col.10195
Haralick, 1974, A measure for circularity of digital figures, IEEE Trans Syst. Man Cybern. SMC-4, 394, 10.1109/TSMC.1974.5408463
Bertalmio, 2000, Image inpainting, Proc. Sig Graph. Conf. Comput. Graph. Interactive Tech., 417
Bertalmio, 2001, Navier–Stokes, fluid dynamics, and image and video inpainting, 355
Weickert, 2003, Coherence-enhancing shock filters, Lecture Notes Comput. Sci., 2781, 1, 10.1007/978-3-540-45243-0_1