Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28

Molecular Cell - Tập 65 Số 4 - Trang 618-630.e7 - 2017
Aaron A. Smargon1,2,3,4, David Cox1,5,3,6,4, Neena Pyzocha1,5,3,4, Kang‐Cheng Zheng1,3,4, Ian M. Slaymaker1,3,4, Jonathan S. Gootenberg1,7,3,4, Omar Abudayyeh1,3,6,4, Patrick Essletzbichler1,3,4, Sergey Shmakov8,9, Kira S. Makarova8, Eugene V. Koonin8, Feng Zhang1,2,3,4
1Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
2Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3Departments of Brain and Cognitive Science and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
4McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA
5Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
6Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, USA
7Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
8National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
9Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abil, 2015, Engineering reprogrammable RNA-binding proteins for study and manipulation of the transcriptome, Mol. Biosyst., 11, 2658, 10.1039/C5MB00289C

Abudayyeh, 2016, C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector, Science, 353, aaf5573, 10.1126/science.aaf5573

Anantharaman, 2013, Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing, Biol. Direct, 8, 15, 10.1186/1745-6150-8-15

Baba, 2006, Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, Mol. Syst. Biol., 2, 10.1038/msb4100050

Bernhart, 2006, Local RNA base pairing probabilities in large sequences, Bioinformatics, 22, 614, 10.1093/bioinformatics/btk014

Biswas, 2013, CRISPRTarget: bioinformatic prediction and analysis of crRNA targets, RNA Biol., 10, 817, 10.4161/rna.24046

Camacho, 2009, BLAST+: architecture and applications, BMC Bioinformatics, 10, 421, 10.1186/1471-2105-10-421

Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143

Crooks, 2004, WebLogo: a sequence logo generator, Genome Res., 14, 1188, 10.1101/gr.849004

East-Seletsky, 2016, Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection, Nature, 538, 270, 10.1038/nature19802

Edgar, 2007, PILER-CR: fast and accurate identification of CRISPR repeats, BMC Bioinformatics, 8, 18, 10.1186/1471-2105-8-18

Filipovska, 2011, Designer RNA-binding proteins: new tools for manipulating the transcriptome, RNA Biol., 8, 978, 10.4161/rna.8.6.17907

Gerdes, 2003, Experimental determination and system level analysis of essential genes in Escherichia coli MG1655, J. Bacteriol., 185, 5673, 10.1128/JB.185.19.5673-5684.2003

Hale, 2009, RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex, Cell, 139, 945, 10.1016/j.cell.2009.07.040

Heidrich, 2015, Investigating CRISPR RNA biogenesis and function using RNA-seq, Methods Mol. Biol., 1311, 1, 10.1007/978-1-4939-2687-9_1

Henikoff, 1992, Amino acid substitution matrices from protein blocks, Proc. Natl. Acad. Sci. USA, 89, 10915, 10.1073/pnas.89.22.10915

Hildebrand, 2009, Fast and accurate automatic structure prediction with HHpred, Proteins, 77, 128, 10.1002/prot.22499

Jiang, 2016, Degradation of phage transcripts by CRISPR-associated rnases enables type III CRISPR-Cas immunity, Cell, 164, 710, 10.1016/j.cell.2015.12.053

Kim, 2013, Crystal structure and nucleic acid-binding activity of the CRISPR-associated protein Csx1 of Pyrococcus furiosus, Proteins, 81, 261, 10.1002/prot.24183

Konermann, 2015, Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex, Nature, 517, 583, 10.1038/nature14136

Li, 2009, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, 25, 1754, 10.1093/bioinformatics/btp324

Lorenz, 2011, ViennaRNA Package 2.0, Algorithms Mol. Biol., 6, 26, 10.1186/1748-7188-6-26

Mackay, 2011, The prospects for designer single-stranded RNA-binding proteins, Nat. Struct. Mol. Biol., 18, 256, 10.1038/nsmb.2005

Makarova, 2015, An updated evolutionary classification of CRISPR-Cas systems, Nat. Rev. Microbiol., 13, 722, 10.1038/nrmicro3569

Mali, 2013, RNA-guided human genome engineering via Cas9, Science, 339, 823, 10.1126/science.1232033

Marraffini, 2015, CRISPR-Cas immunity in prokaryotes, Nature, 526, 55, 10.1038/nature15386

Mohanraju, 2016, Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems, Science, 353, aad5147, 10.1126/science.aad5147

Möller, 2001, Evaluation of methods for the prediction of membrane spanning regions, Bioinformatics, 17, 646, 10.1093/bioinformatics/17.7.646

Ran, 2015, In vivo genome editing using Staphylococcus aureus Cas9, Nature, 520, 186, 10.1038/nature14299

Remmert, 2011, HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment, Nat. Methods, 9, 173, 10.1038/nmeth.1818

Sheppard, 2016, The CRISPR-associated Csx1 protein of Pyrococcus furiosus is an adenosine-specific endoribonuclease, RNA, 22, 216, 10.1261/rna.039842.113

Shmakov, 2015, Discovery and functional characterization of diverse class 2 CRISPR-Cas systems, Mol. Cell, 60, 385, 10.1016/j.molcel.2015.10.008

Shmakov, 2017, Diversity and evolution of class 2 CRISPR–Cas systems, Nat. Rev. Microbiol, 10.1038/nrmicro.2016.184

Staals, 2013, Structure and activity of the RNA-targeting type III-B CRISPR-Cas complex of Thermus thermophilus, Mol. Cell, 52, 135, 10.1016/j.molcel.2013.09.013

Staals, 2014, RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus, Mol. Cell, 56, 518, 10.1016/j.molcel.2014.10.005

Tafer, 2008, The impact of target site accessibility on the design of effective siRNAs, Nat. Biotechnol., 26, 578, 10.1038/nbt1404

Tamulaitis, 2014, Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus, Mol. Cell, 56, 506, 10.1016/j.molcel.2014.09.027

Wright, 2016, Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering, Cell, 164, 29, 10.1016/j.cell.2015.12.035

Yates, 2016, Ensembl 2016, Nucleic Acids Res., 44, D710, 10.1093/nar/gkv1157

Zetsche, 2015, Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system, Cell, 163, 759, 10.1016/j.cell.2015.09.038