Variational formulation of nonlinear dynamic boundary problems of a finite liquid volume performing specified spatial motion

Springer Science and Business Media LLC - Tập 16 - Trang 164-169 - 1980
I. A. Lukovskii

Tài liệu tham khảo

K. I. Volyak, “Variational principle for a compressible liquid,” Dokl. Akad. Nauk SSSR,236, No. 5, 1095–1097 (1977). I. A. Lukovskii, “Variational method in nonlinear dynamic problems of a finite liquid volume,” in: Oscillations of Elastic Structures with Liquid [in Russian], Volna, Moscow (1976), pp. 260–265. I. A. Lukovskii, “Investigation of nonlinear oscillations of liquid in circular cylindrical vessel with a bottom of arbitrary form by the variational method,” in: Dynamics and Stability of Controlled Systems [in Russian], Inst. Matematiki Akad. Nauk UkrSSR, Kiev (1977), pp. 32–44. I. A. Lukovskii, “Variational method of solving the problem of nonlinear oscillation of liquid in vessels of complex geometric form,” in: Dynamics and Stability of Controlled Systems [in Russian], Inst. Matematiki Akad. Nauk UkrSSR, Kiev (1977), pp. 45–61. G. S. Narimanov, L. V. Dokuchaev, and I. A. Lukovskii, Nonlinear Dynamics of Component Apparatus with Liquid [in Russian], Mashinostroenie, Moscow (1977). R. L. Selidzhe and G. B. Uitem, “Variational principles in continuum mechanics,” Mekhanika: Per. Sb. Per. Inostr., Stat.,5, No. 5, 99–123 (1969). H. Bateman, Partial Differential Equations of Mathematical Physics, Dover, New York (1944). J. C. Luke, “A variational principle for a fluid with a free surface,” J. Fluid Mech., No. 27, 395–397 (1967).