Novel method of doxorubicin–SPION reversible association for magnetic drug targeting

International Journal of Pharmaceutics - Tập 363 Số 1-2 - Trang 170-176 - 2008
Emilie Munnier1,2, S. Cohen-Jonathan1,2, Claude Linassier3,1,2, Laurence Douziech-Eyrolles1,2, Hervé Marchais1,2, Martin Soucé1,2, Katel Hervé-Aubert1,2, Pierre Dubois1,2, Igor Chourpa1,2
1Institut Fédératif de Recherche 135 "Imagerie Fonctionnelle", Tours F-37000, France
2Université François-Rabelais, Faculté de Pharmacie, "Focalisation magnétique d'agents anticancéreux", Tours F-37200, France
3CHRU Bretonneau, Service d'Oncologie Médicale, Tours F-37000, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alexiou, 2000, Locoregional cancer treatment with magnetic drug targeting, Cancer Res., 60, 6641

Alexiou, 2006, Medical applications of magnetic nanoparticles, J. Nanosci. Nanotechnol., 6, 2762, 10.1166/jnn.2006.464

Andreadou, 2007, Acute doxorubicin cardiotoxicity is successfully treated with the phytochemical oleuropein through suppression of oxidative and nitrosative stress, J. Mol. Cell Cardiol., 42, 549, 10.1016/j.yjmcc.2006.11.016

Bast, 2007, Protectors against doxorubicin-induced cardiotoxicity: flavonoids, Cell Biol. Toxicol., 23, 39, 10.1007/s10565-006-0139-4

Berry, 2003, Functionalisation of magnetic nanoparticles for applications in biomedicine, J. Phys. D: Appl. Phys., 36, R198, 10.1088/0022-3727/36/13/203

Boonsongrit, 2008, Chitosan drug binding by ionic interaction, Eur. J. Pharm. Biopharm., 62, 267, 10.1016/j.ejpb.2005.09.002

Chourpa, 2005, Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy, Analyst, 130, 1395, 10.1039/b419004a

Corot, 2006, Recent advances in iron oxide nanocrystal technology for medical imaging, Adv. Drug Deliv. Rev., 58, 1471, 10.1016/j.addr.2006.09.013

Duguet, 2006, Towards a versatile platform based on magnetic nanoparticles for in vivo applications, Bull. Mater. Sci., 29, 581, 10.1007/s12034-006-0007-0

Eliot, 1984, Oxidative destruction of DNA by the adriamycin–iron complex, Biochemistry, 23, 928, 10.1021/bi00300a021

Engin, 1995, Extracellular pH distribution in human tumors, Int. J. Hypertherm., 11, 211, 10.3109/02656739509022457

Fiallo, 1999, How Fe3+ binds anthracycline antitumour compounds. The myth and the reality of a chemical sphinx, J. Inorg. Biochem., 75, 105, 10.1016/S0162-0134(99)00040-9

Hasinoff, 1989, Self-reduction of the iron(III)–doxorubicin complex, Free Radic. Biol. Med., 7, 583, 10.1016/0891-5849(89)90139-1

Hoke, 2005, Desferal inhibits breast tumor growth and does not interfere with the tumoricidal activity of doxorubicin, Free Radic. Biol. Med., 39, 403, 10.1016/j.freeradbiomed.2005.03.029

Inoh, 2006, Doxorubicin-conjugated anti-midkine monoclonal antibody as a potential anti-tumor drug, Jpn. J. Clin. Oncol., 36, 207, 10.1093/jjco/hyl004

Jain, 2005, Iron oxide nanoparticles for sustained delivery of anticancer agents, Mol. Pharm., 2, 194, 10.1021/mp0500014

Keizer, 1990, Doxorubicin (adriamycin): a critical review of free radical-dependent mechanisms of cytotoxicity, Pharmacol. Ther., 47, 219, 10.1016/0163-7258(90)90088-J

Layre, 2006, Novel composite core-shell nanoparticles as busulfan carriers, J. Control Release, 111, 271, 10.1016/j.jconrel.2006.01.002

Lo, 2002, Circumvention of multidrug resistance and reduction of cardiotoxicity of doxorubicin in vivo by coupling it with low density lipoprotein, Life Sci., 72, 677, 10.1016/S0024-3205(02)02180-X

Lübbe, 2001, Clinical applications of magnetic drug targeting, J. Surg. Res., 95, 200, 10.1006/jsre.2000.6030

Lübbe, 1996, Preclinical experiences with magnetic drug targeting: tolerance and efficacy, Cancer Res., 56, 4694

Lübbe, 1996, Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors, Cancer Res., 56, 4686

Malisza, 1995, Production of hydroxyl radical by iron(III)–anthraquinone complexes through self-reduction and through reductive activation by the xanthine oxidase/hypoxanthine system, Arch. Biochem. Biophys., 321, 51, 10.1006/abbi.1995.1367

Mellman, 1986, Acidification of the endocytic and exocytic pathways, Annu. Rev. Biochem., 55, 700, 10.1146/annurev.bi.55.070186.003311

Moghimi, 2006, Preface. Particulate nanomedicines, Adv. Drug. Deliv. Rev., 58, 1451, 10.1016/j.addr.2006.09.010

Moreno, 2008, Characterization of cisplatin cytotoxicity delivered from PLGA-systems, Eur. J. Pharm. Biopharm., 68, 503, 10.1016/j.ejpb.2007.08.006

Mosmann, 1983, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Meth., 65, 55, 10.1016/0022-1759(83)90303-4

Müller, 2007, Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro, Biomaterials, 28, 1629, 10.1016/j.biomaterials.2006.12.003

Mykhaylyk, 2005, Doxorubicin magnetic conjugate targeting upon intravenous injection into mice: high gradient magnetic field inhibits the clearance of nanoparticles from the blood, J. Magn. Magn. Mater., 293, 473, 10.1016/j.jmmm.2005.01.063

Neuberger, 2005, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater., 293, 483, 10.1016/j.jmmm.2005.01.064

Ngaboni Okassa, 2007, Optimization of iron oxide nanoparticles encapsulation within poly(d,l-lactide-co-glycolide) sub-micron particles, Eur. J. Pharm. Biopharm., 67, 31, 10.1016/j.ejpb.2006.12.020

Pang, 2007, Redox equilibria of iron oxides in aqueous-based magnetite dispersions: effect of pH and redox potential, J. Magn. Magn. Mater., 311, 94

Petit, 2004, Anthracycline-induced cardiotoxicity, Bull. Cancer, 91, 159

Razzano, 1990, Determination of phenolic ionization constants of anthracyclines with modified substitution pattern of anthraquinone chromophore, Farmaco, 45, 215

Rudge, 2000, Preparation, characterization, and performance of magnetic iron–carbon composite microparticles for chemotherapy, Biometerials, 21, 1411, 10.1016/S0142-9612(00)00006-5

Schöpf, 2005, Methodology description of cellular uptake of PVA coated superparamagnetic iron oxide nanoparticles (SPION) in synovial cells of sheep, J. Magn. Magn. Mater., 293, 411, 10.1016/j.jmmm.2005.02.076

Tokarska-Schlattner, 2006, New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics, J. Mol. Cell Cardiol., 41, 389, 10.1016/j.yjmcc.2006.06.009

Torchilin, 2006, Multifunctional nanocarriers, Adv. Drug. Deliv. Rev., 58, 1532, 10.1016/j.addr.2006.09.009

Thorek, 2008, Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells, Biomaterials, 29, 3583, 10.1016/j.biomaterials.2008.05.015

Wilhelm, 2003, Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating, Biomaterials, 24, 1001, 10.1016/S0142-9612(02)00440-4

Xu, 2006, Inorganic nanoparticles as carriers for efficient cellular delivery, Chem. Eng. Sci., 61, 1027, 10.1016/j.ces.2005.06.019

Zhang, 2007, Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticles carrier and drug release response, Acta Biomater., 3, 838, 10.1016/j.actbio.2007.05.011

Zhang, 2006, The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)–tocopheryl polyethylene glycol succinate nanoparticles, Biomaterials, 27, 4025, 10.1016/j.biomaterials.2006.03.006