Application of machine learning methods to spatial interpolation of environmental variables
Tóm tắt
Từ khóa
Tài liệu tham khảo
Araújo, 2007, Ensemble forecasting of species distribution, TREE, 22, 42
Arthur, 2010, Influence of woody vegetation on pollinator densities in oilseed Brassica fields in an Australian temperate landscape, Basic Appl. Ecol., 11, 406, 10.1016/j.baae.2010.05.001
Asli, 1995, Comparison of approaches to spatial estimation in a bivariate context, Math. Geol., 27, 641, 10.1007/BF02093905
Bivand, 2008
Breiman, 1984
Collins, 1996, A Comparison of Spatial Interpolation Techniques in Temperature Estimation
Cutler, 2007, Random forests for classification in ecology, Ecography, 88, 2783
Dambolena, 2009, Logarithmic transformations in regression: do you transform back correctly?, Primus, 19, 280, 10.1080/10511970802234976
Diaz-Uriarte, 2006, Gene selection and classification of microarray data using random forest, BMC Bioinform., 7, 1
Drake, 2006, Modelling ecological niches with support vector machines, J. Appl. Ecol., 43, 424, 10.1111/j.1365-2664.2006.01141.x
Gilardi, 2002
Gilardi, 2000, Local machine learning models for spatial data analysis, J. Geogr. Inf. Decis. Anal., 4, 11
Goovaerts, 1997
Goovaerts, 2000, Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall, J. Hydrol., 228, 113, 10.1016/S0022-1694(00)00144-X
Goswami, 2007, Real-time flow forecasting in the absence of quantitative precipitation forecasts: a multi-model approach, J. Hydrol, 334, 125, 10.1016/j.jhydrol.2006.10.002
Gregory, 2001, Testing for forecast consensus, J. Bus Econ. Stat., 19, 34, 10.1198/07350010152472599
Guyon, 2009, Analysis of the KDD Cup 2009: fast scoring on a large Orange customer database, 1
Heap, 2008, Geomorphology of the Australian margin and adjacent seafloor, Aust. J. Earth Sci., 55, 555, 10.1080/08120090801888669
Heap, 2008
Hemer, 2006, The magnitude and frequency of combined flow bed shear stress as a measure of exposure on the Australian continental shelf, Cont Shelf Res., 26, 1258, 10.1016/j.csr.2006.03.011
Hengl, 2007
Hengl, 2007, About regression-kriging: from equations to case studies, Comput. Geosci., 33, 1301, 10.1016/j.cageo.2007.05.001
Hoeting, 1999, Bayesian model averaging: a tutorial, Stat. Sci., 14, 382
Legendre, 1998
Li, 2008
Li, 2011, A review of comparative studies of spatial interpolation methods: performance and impact factors, Ecol. Inform., 228, 10.1016/j.ecoinf.2010.12.003
Li, 2010
Liaw, 2002, Classification and regression by radomForest, R News, 2, 18
Maindonald, 2008
Marmion, 2009, Evaluation of consensus methods in predictive species distribution modelling, Divers. Distrib, 15, 59, 10.1111/j.1472-4642.2008.00491.x
Martínez-Cob, 1996, Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous terrain, J. Hydrol., 174, 19, 10.1016/0022-1694(95)02755-6
Nilsson, 2000, Consensus prediction of membrane protein topology, FEBS Lett., 486, 267, 10.1016/S0014-5793(00)02321-8
Odeh, 1995, Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging, Geoderma, 67, 215, 10.1016/0016-7061(95)00007-B
Okun, 2007, Random forest for gene expression based cancer classification: overlooked issues
Pebesma, 2004, Multivariable geostatistics in S: the gstat package, Comput. Geosci., 30, 683, 10.1016/j.cageo.2004.03.012
Pinheiro, 2000
Pitcher, 2008, Seabed environments, habitats and biological assemblages, 377
Prasad, 2006, Newer classification and regression tree techniques: bagging and random forests for ecological prediction, Ecosyst, 9, 181, 10.1007/s10021-005-0054-1
2008
Raftery, 2005, Using Bayesian model averaging to calibrate forecast ensembles, Mon Weather Rev., 133, 1155, 10.1175/MWR2906.1
Schuurmans, 2007, Automatic prediction of high-resolution daily rainfall fields for multiple extents: the potential of operational radar, J. Hydrometeorol, 8, 1204, 10.1175/2007JHM792.1
Shan, 2006, Machine learning of poorly predictable ecological data, Ecol. Modell., 195, 129, 10.1016/j.ecolmodel.2005.11.015
Statnikov, 2008, A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification, BMC Bioinform., 9, 319, 10.1186/1471-2105-9-319
Stein, 1988, Use of soil map delineations to improve (co-)kriging of point data on moisture deficits, Geoderma, 43, 163, 10.1016/0016-7061(88)90041-9
Strobl, 2007, Bias in random forest variable importance measures: illustrations, sources and a solution, BMC Bioinform., 8, 25, 10.1186/1471-2105-8-25
Venables, 2002
Verfaillie, 2006, Multivariate geostatistics for the predictive modelling of the surficial sand distribution in shelf seas, Cont Shelf Res., 26, 2454, 10.1016/j.csr.2006.07.028
Voltz, 1990, A comparison of kriging, cubic splines and classification for predicting soil properties from sample information, J. Soil Sci., 41, 473, 10.1111/j.1365-2389.1990.tb00080.x
Whiteway, 2007