Improving the yield of recalcitrant Nanobodies® by simple modifications to the standard protocol

Protein Expression and Purification - Tập 185 - Trang 105906 - 2021
Christopher K. Kariuki1,2, Stefan Magez1,3,4
1Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, Belgium
2Department of Tropical and Infectious Diseases, Institute of Primate Research (IPR), Nairobi, Kenya
3Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon, South Korea
4Department of Biochemistry and Microbiology, Universiteit Gent, Ledeganckstraat 35, 9000, Gent, Belgium

Tài liệu tham khảo

Nguyen, 2002, Heavy-chain antibodies in Camelidae; a case of evolutionary innovation, Immunogenetics, 54, 39, 10.1007/s00251-002-0433-0 Dooley, 2006, Antibody repertoire development in cartilaginous fish, Dev. Comp. Immunol., 30, 43, 10.1016/j.dci.2005.06.022 Könning, 2017, Camelid and shark single domain antibodies: structural features and therapeutic potential, Curr. Opin. Struct. Biol., 45, 10, 10.1016/j.sbi.2016.10.019 Hamers-Casterman, 1993, Naturally occurring antibodies devoid of light chains, Nature, 363, 446, 10.1038/363446a0 Laustsen, 2018, Pros and cons of different therapeutic antibody formats for recombinant antivenom development, Toxicon, 146, 151, 10.1016/j.toxicon.2018.03.004 Muyldermans, 2001, Single domain camel antibodies: current status, Rev. Mol. Biotechnol., 74, 277, 10.1016/S1389-0352(01)00021-6 Desmyter, 2015, Camelid nanobodies: killing two birds with one stone, Curr. Opin. Struct. Biol., 32, 1, 10.1016/j.sbi.2015.01.001 Conrath, 2001, Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the Camelidae, Antimicrob. Agents Chemother., 45, 2807, 10.1128/AAC.45.10.2807-2812.2001 Baral, 2006, Experimental therapy of African trypanosomiasis with a Nanobody-conjugated human trypanolytic factor, Nat. Med., 12, 580, 10.1038/nm1395 Stijlemans, 2004, Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies: african trypanosomes as paradigm, J. Biol. Chem., 279, 1256, 10.1074/jbc.M307341200 Ditlev, 2014, Utilizing Nanobody technology to target non-immunodominant domains of VAR2CSA, PloS One, 9, 10.1371/journal.pone.0084981 Lauwereys, 1998, Potent enzyme inhibitors derived from dromedary, Eur. Mol. Biol. Organ. J., 17, 3512, 10.1093/emboj/17.13.3512 De Genst, 2006, Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies, Proc. Natl. Acad. Sci. U. S. A., 103, 4586, 10.1073/pnas.0505379103 Goris, 2008, Potential of antiviral therapy and prophylaxis for controlling RNA viral infections of livestock, Antivir. Res., 78, 170, 10.1016/j.antiviral.2007.10.003 Van Der Linden, 1999, Comparison of physical chemical properties of llama V(HH) antibody fragments and mouse monoclonal antibodies, Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1431, 37, 10.1016/S0167-4838(99)00030-8 Romao, 2016, Identification of useful Nanobodies by phage display of immune single domain libraries derived from camelid heavy chain antibodies, Curr. Pharmaceut. Des., 22, 6500, 10.2174/1381612822666160923114417 Hu, 2017, Generation of Nanobodies against slyd and development of tools to eliminate this bacterial contaminant from recombinant proteins, Protein Expr. Purif., 137, 64, 10.1016/j.pep.2017.06.016 Gelkop, 2018, The development and validation of a novel nanobody-based competitive elisa for the detection of Foot and Mouth Disease 3ABC antibodies in cattle, Front. Vet. Sci., 5, 1, 10.3389/fvets.2018.00250 Harmsen, 2007, Properties, production, and applications of camelid single-domain antibody fragments, Appl. Microbiol. Biotechnol., 77, 13, 10.1007/s00253-007-1142-2 Arbabi Ghahroudi, 1997, Selection and identification of single domain antibody fragments from camel heavy-chain antibodies, FEBS Lett., 414, 521, 10.1016/S0014-5793(97)01062-4 Ahmadvand, 2008, High-expression of monoclonal nanobodies used in the preparation of HRP-conjugated second antibody, Hybridoma, 27, 269, 10.1089/hyb.2008.0006 Mason, 1996, Cloning and expression of a single-chain antibody fragment specific for Foot-and-Mouth Disease virus, Virology, 224, 548, 10.1006/viro.1996.0562 Vincke, 2012, Generation of single domain antibody fragments derived from camelids and generation of manifold constructs, 145, 10.1007/978-1-61779-974-7_8 Salema, 2013, High yield purification of Nanobodies from the periplasm of E. coli as fusions with the maltose binding protein, Protein Expr. Purif., 91, 42, 10.1016/j.pep.2013.07.001 Billen, 2017, Cytoplasmic versus periplasmic expression of site-specifically and bioorthogonally functionalized Nanobodies using expressed protein ligation, Protein Expr. Purif., 133, 25, 10.1016/j.pep.2017.02.009 Baneyx, 1999, Recombinant protein expression in Escherichia coli, Curr. Opin. Biotechnol., 10, 411, 10.1016/S0958-1669(99)00003-8 Baneyx, 2004, Recombinant protein folding and misfolding in Escherichia coli, Nat, Biotechnol., 22, 1399 Ren, 2016, Use of the SHUffle strains in production of proteins, Curr. Protein Pept. Sci., 10.1002/cpps.11 Martin, 2006, A simple vector system to improve performance and utilisation of recombinant antibodies, BMC Biotechnol., 6, 1, 10.1186/1472-6750-6-1 Lobstein, 2012, SHUffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm, Microb. Cell Factories, 11, 1, 10.1186/1475-2859-11-56 Merdanovic, 2011, Protein quality control in the bacterial periplasm, Annu. Rev. Microbiol., 65, 149, 10.1146/annurev-micro-090110-102925 Kadokura, 2010, Mechanisms of oxidative protein folding in the bacterial cell envelope, Antioxidants Redox Signal., 13, 1231, 10.1089/ars.2010.3187 Kadokura, 2003, Protein disulfide bond formation in prokaryotes, Annu. Rev. Biochem., 72, 111, 10.1146/annurev.biochem.72.121801.161459 De Keyzer, 2003, The bacterial translocase: a dynamic protein channel complex, Cell. Mol. Life Sci., 60, 2034, 10.1007/s00018-003-3006-y Lycklama a Nijeholt, 2012, The bacterial sec-translocase: structure and mechanism, Philos. Trans. R. Soc. B Biol. Sci., 367, 1016, 10.1098/rstb.2011.0201 Du Plessis, 2011, The sec translocase, Biochim. Biophys. Acta Biomembr., 1808, 851, 10.1016/j.bbamem.2010.08.016 Lee, 2006, The bacterial twin-arginine translocation pathway, Biochim. Biophys. Acta Biomembr., 1778, 373 Steiner, 2006, Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display, Nat. Biotechnol., 24, 823, 10.1038/nbt1218 Singh, 2013, Effect of signal peptide on stability and folding of Escherichia coli thioredoxin, PloS One, 8 De Marco, 2020, Recombinant expression of nanobodies and nanobody-derived immunoreagents, Protein Expr. Purif., 172, 10.1016/j.pep.2020.105645 Nossal, 1966, The release of enzymes by osmotic shock from Escherichia coli in exponential phase, J. Biol. Chem., 241, 3055, 10.1016/S0021-9258(18)96497-5 Neu, 1965, The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts, J. Biol. Chem., 240, 3685, 10.1016/S0021-9258(18)97200-5 Vázquez-Laslop, 2001, Molecular sieve mechanism of selective release of cytoplasmic proteins by osmotically shocked Escherichia coli, J. Bacteriol., 183, 2399, 10.1128/JB.183.8.2399-2404.2001 Pardon, 2014, A general protocol for the generation of Nanobodies for structural biology, Nat. Protoc., 9, 674, 10.1038/nprot.2014.039 Laemmli, 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680, 10.1038/227680a0 Towbin, 1979, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Natl. Acad. Sci. U. S. A., 76, 4350, 10.1073/pnas.76.9.4350 Niesen, 2007, The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability, Nat. Protoc., 2, 2212, 10.1038/nprot.2007.321 Ruiz, 2002, IMGT gene identification and Colliers de Perles of human immunoglobulins with known 3D structures, Immunogenetics, 53, 857, 10.1007/s00251-001-0408-6 Kaas, 2007, IMGT Colliers de Perles: standardized sequence-structure representations of the IgSF and MHCSF superfamily domains, Curr. Bioinf., 2, 21, 10.2174/157489307779314302 Kaas, 2004, IMGT/3Dstructure-DB and IMGT/StructuralQuery, a database and a tool for immunoglobulin, T cell receptor and MHC structural data, Nucleic Acids Res., 32, 10.1093/nar/gkh042 Lejon, 2002, IgM quantification in the cerebrospinal fluid of sleeping sickness patients by a latex card agglutination test, Trop. Med. Int. Health, 7, 685, 10.1046/j.1365-3156.2002.00917.x Lefranc, 2005, IMGT unique numbering for immunoglobulin and T cell receptor constant domains and Ig superfamily C-like domains, Dev. Comp. Immunol., 29, 185, 10.1016/j.dci.2004.07.003 Muyldermans, 2016, Structure and function of camelid VHH, Encycl. Immunobiol., 2, 153, 10.1016/B978-0-12-374279-7.05019-0 Gasteiger, 2005, Protein identification and analysis tools on the expasy server, Proteomics Protoc. Handb, 571, 10.1385/1-59259-890-0:571 Muyldermans, 2009, Camelid immunoglobulins and Nanobody technology, Vet. Immunol. Immunopathol., 128, 178, 10.1016/j.vetimm.2008.10.299 De Meyer, 2014, Nanobody-based products as research and diagnostic tools, Trends Biotechnol., 32, 263, 10.1016/j.tibtech.2014.03.001 Tsirigotaki, 2016, Protein export through the bacterial sec pathway, Nat. Rev. Microbiol., 15, 21, 10.1038/nrmicro.2016.161 Power, 1992, High-level temperature-induced synthesis of an antibody VH-domain in Escherichia coli using the pelB secretion signal, Gene, 113, 95, 10.1016/0378-1119(92)90674-E Ananthaswamy, 1977, The release of endonuclease I from Escherichia coli by a new cold shock procedure, Biochem. Biophys. Res. Commun., 76, 289, 10.1016/0006-291X(77)90724-0