Improving the yield of recalcitrant Nanobodies® by simple modifications to the standard protocol
Tài liệu tham khảo
Nguyen, 2002, Heavy-chain antibodies in Camelidae; a case of evolutionary innovation, Immunogenetics, 54, 39, 10.1007/s00251-002-0433-0
Dooley, 2006, Antibody repertoire development in cartilaginous fish, Dev. Comp. Immunol., 30, 43, 10.1016/j.dci.2005.06.022
Könning, 2017, Camelid and shark single domain antibodies: structural features and therapeutic potential, Curr. Opin. Struct. Biol., 45, 10, 10.1016/j.sbi.2016.10.019
Hamers-Casterman, 1993, Naturally occurring antibodies devoid of light chains, Nature, 363, 446, 10.1038/363446a0
Laustsen, 2018, Pros and cons of different therapeutic antibody formats for recombinant antivenom development, Toxicon, 146, 151, 10.1016/j.toxicon.2018.03.004
Muyldermans, 2001, Single domain camel antibodies: current status, Rev. Mol. Biotechnol., 74, 277, 10.1016/S1389-0352(01)00021-6
Desmyter, 2015, Camelid nanobodies: killing two birds with one stone, Curr. Opin. Struct. Biol., 32, 1, 10.1016/j.sbi.2015.01.001
Conrath, 2001, Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the Camelidae, Antimicrob. Agents Chemother., 45, 2807, 10.1128/AAC.45.10.2807-2812.2001
Baral, 2006, Experimental therapy of African trypanosomiasis with a Nanobody-conjugated human trypanolytic factor, Nat. Med., 12, 580, 10.1038/nm1395
Stijlemans, 2004, Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies: african trypanosomes as paradigm, J. Biol. Chem., 279, 1256, 10.1074/jbc.M307341200
Ditlev, 2014, Utilizing Nanobody technology to target non-immunodominant domains of VAR2CSA, PloS One, 9, 10.1371/journal.pone.0084981
Lauwereys, 1998, Potent enzyme inhibitors derived from dromedary, Eur. Mol. Biol. Organ. J., 17, 3512, 10.1093/emboj/17.13.3512
De Genst, 2006, Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies, Proc. Natl. Acad. Sci. U. S. A., 103, 4586, 10.1073/pnas.0505379103
Goris, 2008, Potential of antiviral therapy and prophylaxis for controlling RNA viral infections of livestock, Antivir. Res., 78, 170, 10.1016/j.antiviral.2007.10.003
Van Der Linden, 1999, Comparison of physical chemical properties of llama V(HH) antibody fragments and mouse monoclonal antibodies, Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1431, 37, 10.1016/S0167-4838(99)00030-8
Romao, 2016, Identification of useful Nanobodies by phage display of immune single domain libraries derived from camelid heavy chain antibodies, Curr. Pharmaceut. Des., 22, 6500, 10.2174/1381612822666160923114417
Hu, 2017, Generation of Nanobodies against slyd and development of tools to eliminate this bacterial contaminant from recombinant proteins, Protein Expr. Purif., 137, 64, 10.1016/j.pep.2017.06.016
Gelkop, 2018, The development and validation of a novel nanobody-based competitive elisa for the detection of Foot and Mouth Disease 3ABC antibodies in cattle, Front. Vet. Sci., 5, 1, 10.3389/fvets.2018.00250
Harmsen, 2007, Properties, production, and applications of camelid single-domain antibody fragments, Appl. Microbiol. Biotechnol., 77, 13, 10.1007/s00253-007-1142-2
Arbabi Ghahroudi, 1997, Selection and identification of single domain antibody fragments from camel heavy-chain antibodies, FEBS Lett., 414, 521, 10.1016/S0014-5793(97)01062-4
Ahmadvand, 2008, High-expression of monoclonal nanobodies used in the preparation of HRP-conjugated second antibody, Hybridoma, 27, 269, 10.1089/hyb.2008.0006
Mason, 1996, Cloning and expression of a single-chain antibody fragment specific for Foot-and-Mouth Disease virus, Virology, 224, 548, 10.1006/viro.1996.0562
Vincke, 2012, Generation of single domain antibody fragments derived from camelids and generation of manifold constructs, 145, 10.1007/978-1-61779-974-7_8
Salema, 2013, High yield purification of Nanobodies from the periplasm of E. coli as fusions with the maltose binding protein, Protein Expr. Purif., 91, 42, 10.1016/j.pep.2013.07.001
Billen, 2017, Cytoplasmic versus periplasmic expression of site-specifically and bioorthogonally functionalized Nanobodies using expressed protein ligation, Protein Expr. Purif., 133, 25, 10.1016/j.pep.2017.02.009
Baneyx, 1999, Recombinant protein expression in Escherichia coli, Curr. Opin. Biotechnol., 10, 411, 10.1016/S0958-1669(99)00003-8
Baneyx, 2004, Recombinant protein folding and misfolding in Escherichia coli, Nat, Biotechnol., 22, 1399
Ren, 2016, Use of the SHUffle strains in production of proteins, Curr. Protein Pept. Sci., 10.1002/cpps.11
Martin, 2006, A simple vector system to improve performance and utilisation of recombinant antibodies, BMC Biotechnol., 6, 1, 10.1186/1472-6750-6-1
Lobstein, 2012, SHUffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm, Microb. Cell Factories, 11, 1, 10.1186/1475-2859-11-56
Merdanovic, 2011, Protein quality control in the bacterial periplasm, Annu. Rev. Microbiol., 65, 149, 10.1146/annurev-micro-090110-102925
Kadokura, 2010, Mechanisms of oxidative protein folding in the bacterial cell envelope, Antioxidants Redox Signal., 13, 1231, 10.1089/ars.2010.3187
Kadokura, 2003, Protein disulfide bond formation in prokaryotes, Annu. Rev. Biochem., 72, 111, 10.1146/annurev.biochem.72.121801.161459
De Keyzer, 2003, The bacterial translocase: a dynamic protein channel complex, Cell. Mol. Life Sci., 60, 2034, 10.1007/s00018-003-3006-y
Lycklama a Nijeholt, 2012, The bacterial sec-translocase: structure and mechanism, Philos. Trans. R. Soc. B Biol. Sci., 367, 1016, 10.1098/rstb.2011.0201
Du Plessis, 2011, The sec translocase, Biochim. Biophys. Acta Biomembr., 1808, 851, 10.1016/j.bbamem.2010.08.016
Lee, 2006, The bacterial twin-arginine translocation pathway, Biochim. Biophys. Acta Biomembr., 1778, 373
Steiner, 2006, Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display, Nat. Biotechnol., 24, 823, 10.1038/nbt1218
Singh, 2013, Effect of signal peptide on stability and folding of Escherichia coli thioredoxin, PloS One, 8
De Marco, 2020, Recombinant expression of nanobodies and nanobody-derived immunoreagents, Protein Expr. Purif., 172, 10.1016/j.pep.2020.105645
Nossal, 1966, The release of enzymes by osmotic shock from Escherichia coli in exponential phase, J. Biol. Chem., 241, 3055, 10.1016/S0021-9258(18)96497-5
Neu, 1965, The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts, J. Biol. Chem., 240, 3685, 10.1016/S0021-9258(18)97200-5
Vázquez-Laslop, 2001, Molecular sieve mechanism of selective release of cytoplasmic proteins by osmotically shocked Escherichia coli, J. Bacteriol., 183, 2399, 10.1128/JB.183.8.2399-2404.2001
Pardon, 2014, A general protocol for the generation of Nanobodies for structural biology, Nat. Protoc., 9, 674, 10.1038/nprot.2014.039
Laemmli, 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680, 10.1038/227680a0
Towbin, 1979, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Natl. Acad. Sci. U. S. A., 76, 4350, 10.1073/pnas.76.9.4350
Niesen, 2007, The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability, Nat. Protoc., 2, 2212, 10.1038/nprot.2007.321
Ruiz, 2002, IMGT gene identification and Colliers de Perles of human immunoglobulins with known 3D structures, Immunogenetics, 53, 857, 10.1007/s00251-001-0408-6
Kaas, 2007, IMGT Colliers de Perles: standardized sequence-structure representations of the IgSF and MHCSF superfamily domains, Curr. Bioinf., 2, 21, 10.2174/157489307779314302
Kaas, 2004, IMGT/3Dstructure-DB and IMGT/StructuralQuery, a database and a tool for immunoglobulin, T cell receptor and MHC structural data, Nucleic Acids Res., 32, 10.1093/nar/gkh042
Lejon, 2002, IgM quantification in the cerebrospinal fluid of sleeping sickness patients by a latex card agglutination test, Trop. Med. Int. Health, 7, 685, 10.1046/j.1365-3156.2002.00917.x
Lefranc, 2005, IMGT unique numbering for immunoglobulin and T cell receptor constant domains and Ig superfamily C-like domains, Dev. Comp. Immunol., 29, 185, 10.1016/j.dci.2004.07.003
Muyldermans, 2016, Structure and function of camelid VHH, Encycl. Immunobiol., 2, 153, 10.1016/B978-0-12-374279-7.05019-0
Gasteiger, 2005, Protein identification and analysis tools on the expasy server, Proteomics Protoc. Handb, 571, 10.1385/1-59259-890-0:571
Muyldermans, 2009, Camelid immunoglobulins and Nanobody technology, Vet. Immunol. Immunopathol., 128, 178, 10.1016/j.vetimm.2008.10.299
De Meyer, 2014, Nanobody-based products as research and diagnostic tools, Trends Biotechnol., 32, 263, 10.1016/j.tibtech.2014.03.001
Tsirigotaki, 2016, Protein export through the bacterial sec pathway, Nat. Rev. Microbiol., 15, 21, 10.1038/nrmicro.2016.161
Power, 1992, High-level temperature-induced synthesis of an antibody VH-domain in Escherichia coli using the pelB secretion signal, Gene, 113, 95, 10.1016/0378-1119(92)90674-E
Ananthaswamy, 1977, The release of endonuclease I from Escherichia coli by a new cold shock procedure, Biochem. Biophys. Res. Commun., 76, 289, 10.1016/0006-291X(77)90724-0