Engineered PES/SPES nanochannel membrane for salinity gradient power generation
Tài liệu tham khảo
Yip, 2016, Salinity gradients for sustainable energy: primer, progress, and prospects, Environ. Sci. Technol., 50, 12072, 10.1021/acs.est.6b03448
Veerman, 2009, Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water, J. Membr. Sci., 327, 136, 10.1016/j.memsci.2008.11.015
Geise, 2010, Water purification by membranes: the role of polymer science, J. Polym. Sci. Part B: Polym. Phys., 48, 1685, 10.1002/polb.22037
Logan, 2012, Membrane-based processes for sustainable power generation using water, Nature, 488, 313, 10.1038/nature11477
Gotter, 1998, Electrophorus electricus as a model system for the study of membrane excitability, Comp. Biochem. Physiol., 119A, 225, 10.1016/S1095-6433(97)00414-5
Reyes, 2006, Ion permeation through the Na+, K+-ATPase, Nature, 443, 470, 10.1038/nature05129
Doyle, 1998, The Structure of the potassium channel: molecular basis of K+ conduction and selectivity, Science, 280, 69, 10.1126/science.280.5360.69
Gouaux, 2005, Principles of selective ion transport in channels and pumps, Science, 310, 1461, 10.1126/science.1113666
Nguyen, 2010, Comparison of bipolar and unipolar ionic diodes, Nanotechnology, 21, 265301, 10.1088/0957-4484/21/26/265301
Schoch, 2008, Transport phenomena in nanofluidics, Rev. Mod. Phys., 80, 839, 10.1103/RevModPhys.80.839
Cheng, 2010, Nanofluidic diodes, Chem. Soc. Rev., 39, 923, 10.1039/B822554K
Jiang, 2018, Bioinspired smart asymmetric nanochannel membranes, Chem. Soc. Rev., 47, 322, 10.1039/C7CS00688H
Balme, 2017, Large osmotic energy harvesting from functionalized conical nanopore suitable for membrane applications, J. Membr. Sci., 544, 18, 10.1016/j.memsci.2017.09.008
Siria, 2013, Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, 494, 455, 10.1038/nature11876
Feng, 2016, Single-layer MoS2 nanopores as nanopower generators, Nature, 7615, 197, 10.1038/nature18593
Guo, 2010, Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source, Adv. Funct. Mater., 20, 1339, 10.1002/adfm.200902312
Cao, 2011, Towards understanding the nanofluidic reverse electrodialysis system: well matched charge selectivity and ionic composition, Environ. Sci. Technol., 4, 2259
Jia, 2014, Blue energy: current technologies for sustainable power generation from water salinity gradient, Renew. Sustain. Energy Rev., 31, 91, 10.1016/j.rser.2013.11.049
Kim, 2013, Energy harvesting from salinity gradient by reverse electrodialysis with anodic alumina nanopores, Energy, 51, 413, 10.1016/j.energy.2013.01.019
Ji, 2017, Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs, Adv. Funct. Mater., 27, 1603623, 10.1002/adfm.201603623
Ouyang, 2013, Nanofluidic crystal: a facile, high-efficiency and high-power-density scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis, Nanotechnology, 24, 345401, 10.1088/0957-4484/24/34/345401
Choi, 2015, Tunable reverse electrodialysis microplatform with geometrically controlled self-assembled nanoparticle network, Lab Chip, 15, 168, 10.1039/C4LC01031K
Zhang, 2015, Engineered asymmetric heterogeneous membrane: a concentration-gradient-driven energy harvesting device, J. Am. Chem. Soc., 137, 14765, 10.1021/jacs.5b09918
Zhang, 2017, Ultrathin and ion-selective janus membranes for high-performance osmotic energy conversion, J. Am. Chem. Soc., 139, 8905, 10.1021/jacs.7b02794
Wang, 2018, Ultrafast ion sieving using nanoporous polymeric membranes, Nat. Commun., 9, 569, 10.1038/s41467-018-02941-6
Rangou, 2014, Self-organized isoporous membranes with tailored pore sizes, J. Membr. Sci., 451, 266, 10.1016/j.memsci.2013.10.015
Yan, 2014, Imidazolium-functionalized poly(ether ether ketone) as membrane and electrode ionomer for low-temperature alkaline membrane direct methanol fuel cell, J. Power Sources, 250, 90, 10.1016/j.jpowsour.2013.10.140
Li, 2011, Ion exchange membranes for vanadium redox flow battery (VRB) applications, Energy Environ. Sci., 4, 1147, 10.1039/c0ee00770f
Park, 2017, Maximizing the right stuff: the trade-off between membrane permeability and selectivity, Science, 356, eaab0530, 10.1126/science.aab0530
Guillen, 2011, Preparation and characterization of membranes formed by nonsolvent induced phase separation: a Review, Ind. Eng. Chem. Res., 50, 3798, 10.1021/ie101928r
Lu, 2018, Advanced porous PBI membranes with tunable performance induced by the polymer-solvent interaction for flow battery application, Energy Storage Mater., 10, 40, 10.1016/j.ensm.2017.08.004
Lu, 2017, Porous membranes in secondary battery technologies, Chem. Soc. Rev., 46, 2199, 10.1039/C6CS00823B
Lin, 2015, Composite ultrafiltration membranes from polymer and its quaternary phosphonium-functionalized derivative with enhanced water flux, J. Membr. Sci., 482, 67, 10.1016/j.memsci.2015.02.017
Schacher, 2009, Self-supporting, double stimuli-responsive porous membranes from polystyrene-block-poly(N,N-dimethylaminoethyl methacrylate) diblock copolymers, Adv. Funct. Mater., 19, 1040, 10.1002/adfm.200801457
Hahn, 2014, Protein separation performance of self-assembled block copolymer membranes, RSC Adv., 4, 10252, 10.1039/c3ra47306f
Henis, 1983, The Developing technology of gas separating membranes, Science, 220, 11, 10.1126/science.220.4592.11
Lin, 2016, New comb-shaped ionomers based on hydrophobic poly(aryl ether ketone) backbone bearing hydrophilic high concentration sulfonated micro-cluster, Polymer, 96, 188, 10.1016/j.polymer.2016.05.009
Xing, 2004, Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes, J. Membr. Sci., 229, 95, 10.1016/j.memsci.2003.09.019
Zhao, 2008, Fabrication of antifouling polyethersulfone ultrafiltration membranes using pluronic F127 as both surface modifier and pore-forming agent, J. Membr. Sci., 318, 405, 10.1016/j.memsci.2008.03.013
Werner, 1996, Surface characterization of hemodialysis membranes based on streaming potential measurements, J. Biomater. Sci. Polym. Ed., 7, 61, 10.1163/156856295X00832
Zhang, 2017, Ultrathin and ion-selective janus membranes for high-performance osmotic energy conversion, J. Biomater. Sci. Polym. Ed., 139, 8905
Daiguji, 2005, Nanofluidic diode and bipolar transistor, Nano Lett., 5, 2274, 10.1021/nl051646y
Chen, 2014, Sulfonated poly(ether ether ketone) membranes containing pendent carboxylic acid groups and their application in vanadium flow battery, J. Power Sources, 247, 629, 10.1016/j.jpowsour.2013.09.006
Feng, 2002, Super-hydrophobic surfaces: from natural to artificial, Adv. Mater., 1857, 10.1002/adma.200290020
Shi, 2008, Zwitterionic polyethersulfone ultrafiltration membrane with superior antifouling property, J. Membr. Sci., 319, 271, 10.1016/j.memsci.2008.03.047
Ali, 2015, Bioconjugation-induced ionic current rectification in aptamer-modified single cylindrical nanopores, Chem. Commun., 51, 3454, 10.1039/C5CC00257E
Nasir, 2014, Fabrication of single cylindrical Au-coated nanopores with non-homogeneous fixed charge distribution exhibiting high current rectifications, ACS Appl. Mater. Interfaces, 6, 12486, 10.1021/am502419j
Fan, 2008, Gated proton transport in aligned mesoporous silica films, Nat. Mater., 7, 303, 10.1038/nmat2127
Raidongia, 2012, Nanofluidic ion transport through reconstructed layered materials, J. Am. Chem. Soc., 134, 16528, 10.1021/ja308167f
Devanathan, 2017, Ion sieving and desalination: energy penalty for excess baggage, Nat. Nanotechnol., 12, 500, 10.1038/nnano.2017.53
Abraham, 2017, Tunable sieving of ions using graphene oxide membranes, Nat. Nanotechnol., 12, 546, 10.1038/nnano.2017.21
Wen, 2016, Highly selective ionic transport through subnanometer pores in polymer films, Adv. Func. Mater., 26, 5796, 10.1002/adfm.201601689
Joshi, 2014, Precise and ultrafast molecular sieving through graphene oxide membranes, Science, 343, 752, 10.1126/science.1245711
Cao, 2017, Anomalous channel-length dependence in nanofluidic osmotic energy conversion, Adv. Funct. Mater., 27, 1604302, 10.1002/adfm.201604302
Yeh, 2014, Reverse electrodialysis in conical-shaped nanopores: salinity gradient-driven power generation, RSC Adv., 4, 2705, 10.1039/C3RA45392H
Xiao, 2018, Nanofluidic ions transport and energy conversion through ultrathin free-standing polymeric carbon nitride membranes, Angew. Chem. Int. Ed. Engl., 57, 10123, 10.1002/anie.201804299
Kim, 2010, Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels, Microfluid. Nanofluid., 9, 1215, 10.1007/s10404-010-0641-0
Chang, 2016, Paper-based energy harvesting from salinity gradients, Lab Chip, 16, 700, 10.1039/C5LC01232E
Vanoppen, 2016, Salinity gradient power and desalination, 95, 281