Engineered PES/SPES nanochannel membrane for salinity gradient power generation

Nano Energy - Tập 59 - Trang 354-362 - 2019
Xiaodong Huang1, Zhen Zhang1, Xiang-Yu Kong1, Yue Sun1, Congcong Zhu1,2, Pei Liu1,2, Jinhui Pang3, Lei Jiang1,2, Liping Wen1,2
1CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
2School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
3Key Laboratory of Super Engineering Plastic of Ministry of Education, Jilin University, Changchun 130012, PR China

Tài liệu tham khảo

Yip, 2016, Salinity gradients for sustainable energy: primer, progress, and prospects, Environ. Sci. Technol., 50, 12072, 10.1021/acs.est.6b03448 Veerman, 2009, Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water, J. Membr. Sci., 327, 136, 10.1016/j.memsci.2008.11.015 Geise, 2010, Water purification by membranes: the role of polymer science, J. Polym. Sci. Part B: Polym. Phys., 48, 1685, 10.1002/polb.22037 Logan, 2012, Membrane-based processes for sustainable power generation using water, Nature, 488, 313, 10.1038/nature11477 Gotter, 1998, Electrophorus electricus as a model system for the study of membrane excitability, Comp. Biochem. Physiol., 119A, 225, 10.1016/S1095-6433(97)00414-5 Reyes, 2006, Ion permeation through the Na+, K+-ATPase, Nature, 443, 470, 10.1038/nature05129 Doyle, 1998, The Structure of the potassium channel: molecular basis of K+ conduction and selectivity, Science, 280, 69, 10.1126/science.280.5360.69 Gouaux, 2005, Principles of selective ion transport in channels and pumps, Science, 310, 1461, 10.1126/science.1113666 Nguyen, 2010, Comparison of bipolar and unipolar ionic diodes, Nanotechnology, 21, 265301, 10.1088/0957-4484/21/26/265301 Schoch, 2008, Transport phenomena in nanofluidics, Rev. Mod. Phys., 80, 839, 10.1103/RevModPhys.80.839 Cheng, 2010, Nanofluidic diodes, Chem. Soc. Rev., 39, 923, 10.1039/B822554K Jiang, 2018, Bioinspired smart asymmetric nanochannel membranes, Chem. Soc. Rev., 47, 322, 10.1039/C7CS00688H Balme, 2017, Large osmotic energy harvesting from functionalized conical nanopore suitable for membrane applications, J. Membr. Sci., 544, 18, 10.1016/j.memsci.2017.09.008 Siria, 2013, Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, 494, 455, 10.1038/nature11876 Feng, 2016, Single-layer MoS2 nanopores as nanopower generators, Nature, 7615, 197, 10.1038/nature18593 Guo, 2010, Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source, Adv. Funct. Mater., 20, 1339, 10.1002/adfm.200902312 Cao, 2011, Towards understanding the nanofluidic reverse electrodialysis system: well matched charge selectivity and ionic composition, Environ. Sci. Technol., 4, 2259 Jia, 2014, Blue energy: current technologies for sustainable power generation from water salinity gradient, Renew. Sustain. Energy Rev., 31, 91, 10.1016/j.rser.2013.11.049 Kim, 2013, Energy harvesting from salinity gradient by reverse electrodialysis with anodic alumina nanopores, Energy, 51, 413, 10.1016/j.energy.2013.01.019 Ji, 2017, Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs, Adv. Funct. Mater., 27, 1603623, 10.1002/adfm.201603623 Ouyang, 2013, Nanofluidic crystal: a facile, high-efficiency and high-power-density scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis, Nanotechnology, 24, 345401, 10.1088/0957-4484/24/34/345401 Choi, 2015, Tunable reverse electrodialysis microplatform with geometrically controlled self-assembled nanoparticle network, Lab Chip, 15, 168, 10.1039/C4LC01031K Zhang, 2015, Engineered asymmetric heterogeneous membrane: a concentration-gradient-driven energy harvesting device, J. Am. Chem. Soc., 137, 14765, 10.1021/jacs.5b09918 Zhang, 2017, Ultrathin and ion-selective janus membranes for high-performance osmotic energy conversion, J. Am. Chem. Soc., 139, 8905, 10.1021/jacs.7b02794 Wang, 2018, Ultrafast ion sieving using nanoporous polymeric membranes, Nat. Commun., 9, 569, 10.1038/s41467-018-02941-6 Rangou, 2014, Self-organized isoporous membranes with tailored pore sizes, J. Membr. Sci., 451, 266, 10.1016/j.memsci.2013.10.015 Yan, 2014, Imidazolium-functionalized poly(ether ether ketone) as membrane and electrode ionomer for low-temperature alkaline membrane direct methanol fuel cell, J. Power Sources, 250, 90, 10.1016/j.jpowsour.2013.10.140 Li, 2011, Ion exchange membranes for vanadium redox flow battery (VRB) applications, Energy Environ. Sci., 4, 1147, 10.1039/c0ee00770f Park, 2017, Maximizing the right stuff: the trade-off between membrane permeability and selectivity, Science, 356, eaab0530, 10.1126/science.aab0530 Guillen, 2011, Preparation and characterization of membranes formed by nonsolvent induced phase separation: a Review, Ind. Eng. Chem. Res., 50, 3798, 10.1021/ie101928r Lu, 2018, Advanced porous PBI membranes with tunable performance induced by the polymer-solvent interaction for flow battery application, Energy Storage Mater., 10, 40, 10.1016/j.ensm.2017.08.004 Lu, 2017, Porous membranes in secondary battery technologies, Chem. Soc. Rev., 46, 2199, 10.1039/C6CS00823B Lin, 2015, Composite ultrafiltration membranes from polymer and its quaternary phosphonium-functionalized derivative with enhanced water flux, J. Membr. Sci., 482, 67, 10.1016/j.memsci.2015.02.017 Schacher, 2009, Self-supporting, double stimuli-responsive porous membranes from polystyrene-block-poly(N,N-dimethylaminoethyl methacrylate) diblock copolymers, Adv. Funct. Mater., 19, 1040, 10.1002/adfm.200801457 Hahn, 2014, Protein separation performance of self-assembled block copolymer membranes, RSC Adv., 4, 10252, 10.1039/c3ra47306f Henis, 1983, The Developing technology of gas separating membranes, Science, 220, 11, 10.1126/science.220.4592.11 Lin, 2016, New comb-shaped ionomers based on hydrophobic poly(aryl ether ketone) backbone bearing hydrophilic high concentration sulfonated micro-cluster, Polymer, 96, 188, 10.1016/j.polymer.2016.05.009 Xing, 2004, Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes, J. Membr. Sci., 229, 95, 10.1016/j.memsci.2003.09.019 Zhao, 2008, Fabrication of antifouling polyethersulfone ultrafiltration membranes using pluronic F127 as both surface modifier and pore-forming agent, J. Membr. Sci., 318, 405, 10.1016/j.memsci.2008.03.013 Werner, 1996, Surface characterization of hemodialysis membranes based on streaming potential measurements, J. Biomater. Sci. Polym. Ed., 7, 61, 10.1163/156856295X00832 Zhang, 2017, Ultrathin and ion-selective janus membranes for high-performance osmotic energy conversion, J. Biomater. Sci. Polym. Ed., 139, 8905 Daiguji, 2005, Nanofluidic diode and bipolar transistor, Nano Lett., 5, 2274, 10.1021/nl051646y Chen, 2014, Sulfonated poly(ether ether ketone) membranes containing pendent carboxylic acid groups and their application in vanadium flow battery, J. Power Sources, 247, 629, 10.1016/j.jpowsour.2013.09.006 Feng, 2002, Super-hydrophobic surfaces: from natural to artificial, Adv. Mater., 1857, 10.1002/adma.200290020 Shi, 2008, Zwitterionic polyethersulfone ultrafiltration membrane with superior antifouling property, J. Membr. Sci., 319, 271, 10.1016/j.memsci.2008.03.047 Ali, 2015, Bioconjugation-induced ionic current rectification in aptamer-modified single cylindrical nanopores, Chem. Commun., 51, 3454, 10.1039/C5CC00257E Nasir, 2014, Fabrication of single cylindrical Au-coated nanopores with non-homogeneous fixed charge distribution exhibiting high current rectifications, ACS Appl. Mater. Interfaces, 6, 12486, 10.1021/am502419j Fan, 2008, Gated proton transport in aligned mesoporous silica films, Nat. Mater., 7, 303, 10.1038/nmat2127 Raidongia, 2012, Nanofluidic ion transport through reconstructed layered materials, J. Am. Chem. Soc., 134, 16528, 10.1021/ja308167f Devanathan, 2017, Ion sieving and desalination: energy penalty for excess baggage, Nat. Nanotechnol., 12, 500, 10.1038/nnano.2017.53 Abraham, 2017, Tunable sieving of ions using graphene oxide membranes, Nat. Nanotechnol., 12, 546, 10.1038/nnano.2017.21 Wen, 2016, Highly selective ionic transport through subnanometer pores in polymer films, Adv. Func. Mater., 26, 5796, 10.1002/adfm.201601689 Joshi, 2014, Precise and ultrafast molecular sieving through graphene oxide membranes, Science, 343, 752, 10.1126/science.1245711 Cao, 2017, Anomalous channel-length dependence in nanofluidic osmotic energy conversion, Adv. Funct. Mater., 27, 1604302, 10.1002/adfm.201604302 Yeh, 2014, Reverse electrodialysis in conical-shaped nanopores: salinity gradient-driven power generation, RSC Adv., 4, 2705, 10.1039/C3RA45392H Xiao, 2018, Nanofluidic ions transport and energy conversion through ultrathin free-standing polymeric carbon nitride membranes, Angew. Chem. Int. Ed. Engl., 57, 10123, 10.1002/anie.201804299 Kim, 2010, Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels, Microfluid. Nanofluid., 9, 1215, 10.1007/s10404-010-0641-0 Chang, 2016, Paper-based energy harvesting from salinity gradients, Lab Chip, 16, 700, 10.1039/C5LC01232E Vanoppen, 2016, Salinity gradient power and desalination, 95, 281